DNOS LINK EDITOR REFERENCE MANUAL

'MANUAL REVISION HISTORY

DNOS Link Editor Reference Manual (2270522-9701)

Original Issueciivn i irrnnnnns e August 1981
Revision A e e e «+. October 1982
Revision B e i Che e October 1982

© 1981, 1982, Texas Instruments Incorporated, All Rights Reserved.

No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photo-
copying, recording, or otherwise, without the prior written permission of
Texas Instruments Incorporated,

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure by the Government is subject to restrictions as
set forth in subdivision (b)(3)(ii) of the Rights in Technical Data and Com-
puter Software clause at 52.227-7013.

Texas Instruments Incorporated
ATTN: Data Systems Group, M/S 2151
P.O. Box 2909 :
Austin, Texas 78769-2909

1046-2250/28

DNOS Software Manuals

This diagram shows the manuals supporting DNOS, arranged according to user type. Refer to the block identified by your user
group and all blocks above that set to determine which manuals are most beneficial to your needs.

AllDNOS Users:
DNOS Concepts and Facilltles DNQS System Command DNOS Messages and DNOS Master index to
2270501-9701 Intarprater (SCI) Reference Manual Codes Relerence Manual Operaling System Manuals
22705039701 2270506-3701 2270500-9701
DNOS Operations Gulde DNOS Text Editor DNOS Reterence Handbook
2270502-9701 Reference Manual 2270505-9701
2270504-9701
High-Level Assembly Productivity Communications Systems
Language Users: Language Users: Tools Users: Software Users: Programmers:
COBOL Reference Manual 590/99000 Assembly DNOS Sort/Merge DNOS DNCS/SNA DNOS System Generation
2270518-9701 Language Relerence User's Gulde User's Gulde Reference Manual
Manual 2272060-9701 2302663-9701 2270511-9701
DNOS COBOL 2270509-9701
Programmer’s Guida DNOS TIFORM DNOS DNCS DNOS Systems
2270516-9701 DNOS Assembly Refersnce Manual Operations Gulde Programmer's Guide
Language 22765739701 2302662-93701 2270510-9701
DNOS Perlormance Programmar's Gulde
Package Documentation 2270508-9701 DNOS Query-990 DNOS DNCS 914A DNOS Online Dlagnostics
22721099701 User's Guide User's Gulde and Systemn Log Analysls
e I Ret o Manual gNios LlnknEt:IlmrI 2276554-9701 2302664-9701 3?5;’,3%’5;3 Gulde
ascal eranc nu slerance Manual o 1
2270519-9701 2270522-9701 DNQS Deta Base DNOS 3270 Interactive
Management System Communications Software Unlversal ROM Loader
DNOS Tl Pascal DNOS Supervisor Call Programmer's Guide {ICS) User's Guide User's Gulde
Programmer’s Gulde (SVC) Reference 2272058971 2302670-9701 22705349701
2270517-9701 Manual
2270507-9701 DNOS Data Base DNOS 3780/2780
FORTRAAN-78 Reference Administrator User's Emulator User's Guide
Manua| Gulde 2270520-9701
22668681-5701 22720599701
DNOS FORTRAN-78 Data Dictionary
Programmer’s Gulde User’s Gulde
22 0-9701 22765629701
MATHSTAT-78 DNOS TIPE
lF"l‘lrc}gr:all'ru'l'uar's. Refergnce Reference Manual
anua
22886879701 2308786-9701
FORTRAN-T8ISA D T e
g&gggg;;ﬂn:anua 23087879701 o Source

TI BASIC Reference Manual
2308789-9701

RPG || Programmer's
Guide
939524-9701

Code Users:

DNOS System
Dasign Document
22705129701

DNOQS SCl and Utllitles
Deslgn Document
22705135701

DNOS Software Manuals Summary

Concepts and Facliltles
Presents an overview of DNOS with topics grouped by operating system functions. All new users (or
evaluators) of DNOS should read this manual.

DNOS Operatlons Gulde
Explains how to perform dally tasks at a DNOS Installation; includes step-by-step procedures for per-

forming such tasks as operating peripherals, Initlallzing and backing up the system, and manipulating
disk files,

System Command Interpreter {SCI) Reference Manual
Describas how to use SC! In both interactive and batch jobs, Describes command procedures and primi-
tlves and gives a detailed presentation of all SCl commands In alphabetical order for easy reference.

Text Editor Reference Manual
Explalns how to use the Text Editor on DNOS and describes each of the editing commands and func-

tlon keys.

Messages and Codes Reference Manual
Lists the error messages, Infarmative messages, and error codes reported by DNOS.

DNOS Reference Handbook
Provides a summary of commonly used Information for quick reference.

Master Index to Operating System Manuals
Contalns a composlte Index to toplcs in the DNOS operating system manuals.

Programmer's Guldes and Referance Manuals for Languages
Contain information about the languages supported by DNOS. Each programmer's gulde covers operat-
ing system Informatlon relevant to the use of that language on DNOS. Each reference manual covers
details of the language Itself, including fanguage syniax and programming conslderations.

Performance Package Documentation
Describes the enhanced capabilitles that the DNOS Performance Package provides on the Modael 990/12

Computer.) _ .

'Link Editor Reference Manual
Describes how to use the Link Editor on DNOS to combine aeparately generated object modules to
torm a singte linked output.

Supervisor Call (SVC) Reference Manual
Presents detalled Information about each DNOS supervisor call and general information about DNOS
services,

DNOS System Generation Relerence Manual
Explains how to generate a DNOS system for your partlcular configuration and environment.

User’'s Guides for Productlvily Tools
Describe the features, functions, and use of each productlvily tool supported by DNOS.

User's Guides for Communlcations Software
Describe the fealures, functlons, and use of the communications soflware avallable for execution
under DNOS.

Systems Programmer’s Guide
Discusses the DNOS subsystems at a conceptual level and describes how to modify the system for
specific appllication environments.

Online Diagnostics and System Log Analysis Tasks User's Guide
Explains how to execute the oniine dlagnostic tasks and the system log analysis task and how to inter-
pret the results,

Universal ROM Loader User's Guide
Explains how to load the operating system using the ROM loader and describes the error conditions.

DNOS Design Documents
Contain design information about the DNQS system, SCI, and the ulilities. This information is useful
when using a source kil.

iv 2270522-9701

Preface

The DNOS Link Editor is a sofiware utility that executes under the DNOS operating system. The
Link Editor combines independently generated object modules as required to form a single, exe-
cutable program. This capability allows programmers to divide a source program Into modules and
to assembie (or compile) each module separately. The resulting object modules can then be linked
together in a structure suitable for the program.

This manual explains what the Link Editor does and how to use it. Parts of the manual are written
as a tutorial, starting with simple linking operations and gradually working up to more compiex
structures. Other parts of the manual are designed for easy reference.

The manual assumes the reader is an assembly language programmer. However, high-level
language programmers who need more detalls on linking than is provided in the appropriate pro-
grammer’s guide may also find this manual useful. The manual assumes.that the reader Is famillar
with the 990 assembly language and has a working knowledge of the DNOS operating system,
specifically the application development tools and the System Command Interpreter (SCI).

This manual contains the following séections and appendixes:
Section
1 Link Editor Overview — Provides background information on how the Link Editor works.

2 Link Control Gommands — Describes the commands that direct the Link Editor; ex-
plains the functions performed and gives detalls on syntax and use of each command.

3 Linking Single Task Segments — Explains how to link modules In a single segment
structure; covers the basic linking principles and explains how to execute the Link
Editor.

4 Linking Procedure Segments — Explains how to link programs using procedure
segments. This type of structure enables programs to share code for efficient use of
memory. '

5 Linking Program Segments — Explains how to link programs using a number of pro-
gram segments. This type of structure enables programs to conserve memory while
keeping execution time to a minimum.

6 Linking Overlays — Explains how to link programs using overlays. This type of structure

anables you to increase the amouni of code that can fit into the program’s logical
address space.

2270522.9701 v

Preface

Appendix
A

Linking Absoclute Memory Partitions — Explains how to link programs for absolute
memory partitioning. This type of structure allows the creation of programs for exe-
cution on systems that use a comblnation of read-only memory (ROM) and random-
access memory (RAM).

Partial Linking — Explains how to perform a partial link, which links only some of the
modules required by a program. Partial linking reduces the amount of memory required
by the Link Editor for symbol tables.

Error Reporting — Explains the error and warning messages that can occur during
operation of the Link Editor.

Object Code Format — Explains the format of the output produced by the assembler,
the compilers, and the Link Edltor.

High-Level Language Information — Explains how the Pascal, COBOL, and FORTRAN
compilers generate tags used by the Link Editor. This information relates some of the
materlal covered in this manual to a specific high-level language.

Command Syntax — Lists the link control commands and their syntax for qulck
reference.

.In-addition to thls manual, the DNOS software manuals shown on the support manual diagram. .
{frontisplece) contain informatlon reiated to the DNOS Link Editor,

vi

'2270522-9701

Contents

Paragraph

PN N T RE T N
O N =

i I I §
N =

1.4.3.1 -
1.4.3.2
1.4.4
1.4.5

2.1
2.2
2.3
2.3.1
23.2
233
234
235
23.6
23.7
238
239
23.10
23.11
23.12
2.3.13
23.14
2.3.156
2.3.16

2270522-9701

Title

1 — Link Editor Overview

Introductiont i i e
SymbolResolutlon ...ttt i i
Program StructureOverviewccvvnventn
SingleTaskSegmentscoiiriiininrnrs-
ProcedureSegmentscoiiiivnrernraraenenens
ProgramSegmentsciiiiiiiirrrnrrannians
OVENaYS o v e e e i
Absolute Memory Partitlons
LinkEditorFllest iiiiiiinianraneans
LinkControl Fileiiviiiiiiiiiicnianneneaas
ObjectModules............. e
Libraries oo v e e raa e
-Directory Librarlesc0 i,
Sequentlal Llbrariescciiiiiiiiiiiiiiinas
Linked OutputModules e ean e
ListingFlle.oiviinn i i e in e

Introduction ... i i e
Command Functionsciimineeneaiiennas
Command Descriptionso i,
ABSOLUTECommandoiiiuinnrrninernns
ADJUSTCOomMMANdvvvririevietiiannnnnssnnnans
ALLGLOBALCommandccvivriviernanrannnns
ALLOCATECommandcvuiecriinnnnnnnnsnns
AUTOCommandc.iiiiiiin ettt iaraeraenns
COMMONG CommMandovtivererennanaenennnns
DATACommaNdcivieiiiiianrrranerannanas
DUMMY Commangocviirnrrennennrerasianss
ENDCommMandovviniiivrrvrnnenernnnenenrns
ERRORCommMand.ciivereinvnansiracinnnnns
FINDCOMMANd.ot i i irer v amrannsraannnns
FORMATCOMMANDcvvenerrvnaneennrsnannesns
GLOBALGCOMMANGvtvitinraerernmcnerannnns
INCLUDEGommandooivvreenenceesnannrsnns
LIBRARY Commandoiiinirnnrernaeanes
LOADCOmMmMANdciitrinarttannannrernnsaans

Page

Contents

Paragraph

2.3.17
2.3.18
2.3.19
2.3.20
2.3.21
2.3.22
2.3.23
2.3.24
23.25
2.3.26
23.27
2.3.28
2.3.29
2.3.30
2.3.31
2.3.92
2.3.33
2.3.34

31
3.2
3.3
3.3.1
3.3.2
3.3.3
34
35

4.1
4.2
4.3
4.4

5.1
5.2
5.3
5.4

vili

Title Page
MAP CommMand i i i it e e e e e 2-15
NOAUTO Command ittt e e e ettt ettty 2-16
NOERROR COmMMandottt tniertrerarnneeannsnrenenss 2-16
NOLOAD Command ittt it te it ettt et tan o nntaeraanas 2-16
NOMAP Command ittt ittt et et e aas e e iaeaeeenns 2-16
NOPAGE Command oottt i v tn it tnts et tarnrarnnnens, 217
TNOSYMT COMMEANG .+ . vttt e e tie it ettt tetseene e rnnanaenseess 217
NOTGLOBAL CommMANdttt irrntrerr e renrnnrneenansenns 217
PAGE Command it ittt tet ittt ittt an e, 2-18
PARTIAL Commandcoitiiiiiitnie e et s tas e insnnsansnansness 2-18
PHASE ComMmMaNdttt it v e tara st aenataeennnnns 2-19
PROCEDURE CoOmMMand. .. .ouiiiteiietn st trenesnensenenasnsentnns 2-20
PROGRAM COmMMand. . . .v i ii i ittt mvr st vttt et eaeeeannenns 2-21
SEARCH Command eriiiietn et et en e raernasssnnennennnns 2-22
SEGMENT Commandttt itieie it tetennarnersrnneineannns 2-23
SHARE ComMmMaNndottt it ittt ise v ivrans s tntarasmeneesnnn 2-24
Y MT COMMANG L. . i it ittt te sttt ettt ey 2-24
TASK COoMMANG ... ittt it n et st anrenantnarnrnneraenenns 2:25
3 — Linking Single Task Segments
Introduction................. . it ettt e 3-1
SingleTask Structure 0 ittt ittt it ie it e i 3
Building the Control Stream e e se et e 34
Symbol Resolution Commands i iin it iie e eirnnnn 35
Special Function Commandsitinriiir ittt ittt taratitnnnnens 36
Cutput Listing Commandsoii i i i i et e 37
Executing the LInk EdItOr.ottt it i e it ettt ce e 3-8
Reading the LINKMap00 it ittt i e e ettt bt ie e nn e ireanns 3-10
4 — Linking Procedure Segments
118 To L T 4o o O R 41
Procedure/Task Structureo iiiiiiiii it ittt ittt e e ennnnas 41
Buildingthe Control Stream ... it it i it it e e st e nnneses 4-5
Readingthe LINKMapoiiiiiiii i i i e sttt ie i cisaeans 4-8
5 — Linking Program Segments
L0 T LT o] { Lo o 5.1
TaskiProgram Segment Structure i inrii i i, 5-1
Buildingthe Control Streamottt ittt i, 55
Readingthe LINKMapt i et et eaaeias 57
2270522-9701

——

Paragraph

6.1
6.2
6.2.1
6.2.2
6.2.3
6.2.4
6.3
6.3.1
6.3.2
6.4

7.1
7.2
7.3
7.4

8.1
8.2
8.3
8.4

9.1
9.2
9.3

Appendix

A
B
C

2270522-971

Contants

Title Page
6 — Linking Overlays
[F3Y o Te 1034 [| 1 IO R R R 6-1
OVEHAY SHUGTUIE ...\ttt ciiarerainenrnaerrassessicstanneaanees " .61
User-Loaded OverlayS. ... o.veetie st iiiiorneerenaertoanesnnaasssnasassos 6-4
Overlay Managerovevrnn it v rannenrraastassnennarsananssranss 6-4
Promotlon of Modulescceiiiin et ininnerianneraraasnarrnnens . .67
Placement of Assembier-DeflnedSegmentso viiiaiaiinnnas 6-7
Building the Control Streamciiverreticnnsianrraraneannericns 6-8
Linkingthe OverlayManagercooviviiiiiirnriininnnnanannans 6-10
Linking Program SegmentswithOverlayscociviiavo it 6-11
Readingthe LInNKMapttt ittt 6-12
7 — Linking Absolute Memory Partitions
R T 0 0s L0114 L ¢ IR I T 7-1
Absolute Memory Partition Structure APIPR e 71
Buildingthe Control Streamcoiiiiivinerniar i tiriianaann s 7-4
Readingthe LinkMapooiviiii it ittt cana s 7-8
" 8 — Partlal Linking
Introductiont v ien i et e 81
Partial Link Structurevovevt e i catitnriaratrrasaesne st otsasssannns 8-1
Bullding the Control Stream st baeranr e 8-4
Readingthe LINKMap oottt ettt 85
9 — Error Reporting
T3 Yo 1o L1 L+ Lo] 1 P e 91
LISting File MeSSagescv it iriinrrarnacnesnascnsoassnannanss 92
Terminat Local FIleMeSSageS ..o oo v v e nrnier i iianannrrvsnssnsassassanns 9-10
Appendixes
Title Page
ObjectCodeFormat................... ... e A-1
High-Level Language Informationo it B-1
CommAand SYNtAX ..o viiinn it s i i e s e C-1
Index
ix

Conlents

llustrations

Figure Title Page
11 Example of Programs Sharing Procedures.c..eeor e eeerennnnn. 1-5
1-2 Exampie of a Task Using Program Segments e 1-7
1-3 Example of an Overlay Structurec.vvviinn ettt eenens 1-8
1-4 Example of Absolute Memory Partitloningcoovvvvnirenerennninn.. 1-10
1-5 . Link Editor FIlest e e e e e 1-11
31 MODA Assembly Listing — Single Task Structurecooovrrenenn s, 3-2
3-2 MODB Assembly Listing — Single Task Structureccovr v ivrvrnnn. 3-3
33 MODC Assembly Listing — Single Task Structureovvrrvnrrrnnn... 3-3
34 Example Listing File — Single Task Structureoovveeonrrnnren. 3-13
4-1 MODA Assembly Listing — Procedure/Task Structurecoovuun.. 4-2
4-2 MODB Assembly Listing — Procedure/Task Structurec0ovun... 4-3
4-3 MODC Assembly Listing — ProcedurefTask Structureovvuvnns 4-3
4-4 MODX Assembly Listing — Procedure/Task Structure......................... 4-4
4-5 MODY Assembly Listing — Procedure/Task Structure.ooovnreevrnnnnn.. 4-4
4-6 Example Listing File — Procedure/Task Structure e 48
51 MODA Assembly Listing — Task/Program Segment Structure 5-3
- 5.2 MODB Assembly Listing — Task/Program Segment Structure . .,............... 5-4
53 MODC Assembly Listing — Task/Program Segment Structure 5-4
5-4 MODD Assembly Listing — Task/Program Segment Structure 55
55 Example Listing File — Task/Program Segment Structure 5-7
6-1 Example Overlay Structurettt iee e, 6-3
8-2 Example Listing File — Overlay Structurec.coviiniirennnnnnn.. 6-12
7-1 MODA Assembly Listing — Absolute Memory Partitions 72
7-2 MODB Assembly Listing — Absolute Memory Partitions 7-3
7-3 MODC Assembly Listing — Absolute Memory Partitions 7-3
7-4 MODD Assembly Listing — Absolute Memory Partitlons 7-4
7-5 Example Memory Conflguration for Multiple Qutput Modules 7-7
7-6 Exampie Listing File — Absolute Memory Partitionscoouun... 7-8
8-1 MODA Assembly Listing — Partial LInKingcoviveerenrnnnnennnnnns 8-2
8.2 MODB Assembly Listing — Partlal LInKINGccovtrrrinnnnr s, 8-3
8-3 MODC Assembly Listing — Partial Linkingc0viieineernennnnns, 83
8-4 Example Listing File — Partlal LINKINGnnnn e iiseenee s 86
X 2270522-9701

Gonlents

Tables
Table ‘ Title Page
2-1 Summaryof LinkControl Commandso ittt in st eranne s 2-2
91 Listing File ErrorMessages vcv i ii ittt it ii it et ettt a st anansnas 9.2
9-2 Listing FileWarning Messagescovvisiinnrrnienirincaaneenen....98
9-3 Terminal Local Flle ErrorMessagescocvniiinrieirneesiienseans 9-10
9.4 [o] o T [9-14

2270522-9701 xifxil

Link Editor Overview

1.1 INTRODUCTION

The DNOS Link Editor combines (links) object modules to form an executable program. With the
Link Editor, you can divide the source code of a program into separate modules and assemble (or
compile} the modules independently. This is useful for the following reasons:

. Avoids long assemblies of large programs

* Allows you to modify a single moduile without having to reassemble the entire program
* Reduces the symbol table size during assembly

* Allows different programs to use the same object modules

e Allows structuring of programs to share code and to conserve memory during execution

Linking consists of gathering the modules required by a program, resolving symbol references
among them, and arranging them in a deflned structure. You must link any program that’
references another program or module, as well as any program that requlires structuring. You must
also link programs containing common segments or data segments (produced by the CSEG and
DSEG assembler directives); this reorganizes each segment type into a continuous bilock within
the program. The Link Editor performs these functions and produces a linked output that you can
install and execute.

This section gives an overview of the Link Editor and its operation, The following paragraphs
describe how the Link Editor performs symbol resolution, the various ways you can structure a
program, and the files associated with Link Editor operation,

1.2 SYMBOL RESOLUTION

Symbol resolution consists of assigning a value to a symbol when the symbol Is first defined and
replacing the symbol with that value wherever the symbol is referenced. The 990 assembler
(SDSMAC) resoives symbols that are local to a single module (symbols used only within that
module). The Link Editor resolves symbols that are referenced In one module but defined in
another module; these are referred to as external symbols.,

The assembler provides two directives (DEF and REF) that make external symbols available to the

Link Editor for resoiution. The source code of each module that defines or references an external
symbol must Include these directives.

2270522.9701 11

Link Editor Overview

The DEF directive in a module specifles the symbols that are defined in that module but refer-
enced by other modules. The DEF directlve causes the assembler to include both the symbols and
their locations in the object code. These symbols are then externally defined so that they are
avallable for linking to other modules. The assembler tags the records containing these symbols
as external definitlons (DEF tags).

The REF directive in a module specifles symbols that are referenced by that module but defined in
other modules. The REF directive causes the assembler to include the symbols in the object code
so that the corresponding locations can be obtalned from external definitions. The assembler tags
the records containing these symbols as external references (REF tags).

To resolve the external references, the Link Editor first builds a list of symbols from the REF tag
and DEF tag records in the object modules that are to be included In the link. The Link Edltor then
matches the REF tag symbols with the DEF tag symbols. Each time it finds a match, the Link
Editor inserts the correct locations for external symbols In the linked output. Thus, every symbol
specifled in a REF directive must match a symbol specifled In a DEF directive in one of the
modules that will be included in the link.

The Link Editor has an automatic search capability that searches defined libraries for DEF tags to
match unresolved REF tags. A subseguent paragraph expiains this capability further.

If the linking process completes and some unresolved external references still exist, the Link
Edlitor issues a warning message. Section 9 explains warning and error messages and how they
are reported.
1.3 PROGRAM STRUCTURE OVERVIEW
The Link Editor allows you to specify the manner and order In which modules are to be linked. This
allows you to design and structure programs that use memory efficiently. The different ways you
can structure a program are as follows:

. A single task segment

. A task segment with one or two attached procedure segments

* A task segment with a number of program segments

s A task segment with overtays or a task segment and program segment(s} with overlays

e A task segment with absolute memory partitions
The following paragraphs give an overvlew of each type of structure and explain when and why
each Is useful. Sections 3 through 7 explain how to link modules for each type of structure. Sec-
tion 3 covers the basic linking principles, using the simplest type of structure (single task seg-

ment) as an example. Since the other sections build on the material covered in Section 3, read Sec-
tion 3 first, :

1-2 22705229701

Link Edftor Overview

The Link Editor also allows you 1o partially /Ink modules by linking only some of the modules re-
quired by a program. The output of a partial link Is a single module that contains external defi-
nitions and external references that could not be resolved in the partial link. You must link this
output module with other modulas to form an executable program.

Partial linking is useful when more than one program can use a complete set of modules or when
all the modules to be linked contain too many symbols for the Link Editor to handle at one time.
Section 8 explains how to perform a partlal link, bullding on the information covered In Section 3.

1.3.1 Single Task Segments ‘

A task Is a program that executes under the control of the operating system. It consists of a logical
address space that defines the memory accessible to the program during executlon. A program
cannot access more than 64K (where K equals 1,024) bytes of memory at one time. In DNOS, the
logical address space of a program can consist of several segments, with each segment occupy-
ing a single block of memory.

The task segment contains the addresses required to initiate execution of the program (entry
vector). The task segment may also contain code and/or data. Every program must have one and
only one task segment. In a single task structure, the entire program is contained within the task
segment. Thus, the entire program Is loaded In one continuous block of memory.

You can structure a program-as a single task segment when the entire program does not exceed
64K bytes and when it does not share any portions of its code with other programs during exe-
cutlon. This type of structure does not use system resources efficiently. However, you should use
it for small, nonreplicatable programs. {Nonrepli¢atable means that only one copy of the program -
can be in memory at one time.) . '

Single tasks are simple structures that do not require a lot of conslderation in linking. The Link
Editor simply includes the required modules [n the order speclfied, resolves the references among
them, and produces a single linked output module. The output module is defined as a task seg-
ment, Section 3 explains how to link modules to form a single task structure.

1.3.2 Procedures Segments :

In addition to the task segment, a program can have one or two procedure segments to allow shar-
ing of code between programs. The Link Editor produces one linked output module for each seg-
ment. The segments are installed separately in the program file, but the procedure segments are
assoclated with (attached to) the task segment during installation. Procedure segments can be
attached to more than one task at a time. When a program is bid, both the task segment and any
attached procedure segments are loaded into memory. Once In memory, a procedure segment can
be shared among several different tasks and/or several copies of the same task, :

You can use this type of structure when the total size of the segments does not exceed 64K bytes.
Since the entire program is loaded at one time, this type of structure does not conserve memory
on the execution of one task. However, it does conserve physical memory when several tasks that
can share the same procedure segment are in memory at the same time. In this case, only one
copy of the shared procedure needs to be in memory; the area of memory containing the pro-
cedure segment is mapped into the logical address space of each program that uses it. '

When linking this type of structure, the Link Editor arranges modules in a specified order to form

the segments. You must define each segment by specifying it as a procedure segment or a task
segment and assigning a name to it. Procedure segments must precede the task segment.

22705229701 1-3

Link Editor Overview

The procedure segment(s) usually contalns only executable code and/or constant data. In order for
a procedure segment to be shared, it must be reentrant; that Is, one program cannot modify It so
that it adversely affects the execution of another program that uses it. No more than two pro-
cedures can be linked to one task segment.

As prevlously stated, the task segment must contain the entry vector for the program. The task
segment may also contain data or code that Is not needed by other programs.

Figure 1-1 Is an example of several programs (TASKA, TASKB, and TASKC) sharing one procedure
(PROCH1). When one of these programs Is bid, both the task segment and the procedure segment
are loaded Into memory, each |n a different area of the physical address space. When the other
programs are bid, only the task segments are loaded since the procedure segment Is already In
memory. The appropriate memory segments are mapped into the correct positions of each pro-
gram’'s logical address space. f

Sectlon 4 explains how to link modules to form a program with attached procedures,

1.3.3 Program Segments

As previously stated, the logical address space of a program can conslist of one or more segments,
In addition to the procedure and task segments, DNOS allows a number of additlonal program
segments. By using program segments, you can increase the amount of code that can fit into the
program’s loglcal address space.

During executlon, a program can address no more than three segments at one time. However,
DNOS segment management allows a program to dynamically change the set of segments cur-
rently addressable. The program makes these changes by Issuing supervisor calls (SVCs).
Although the program cannot change the task segment, It can add, delete, or exchange other
segments within the program's logical address space.

Program segments can contain both data and executable code. The management of program
segments provides more flexibllity than that of procedure segments. You can reserve a segment
so that It remalns in memory (If enough physical memory Is available), even though it is not
currently being used. This reduces execution time since the segment is already in memory and
does not have to be loaded from the disk when It is needed again. Procedure and task segments
are loaded into memory when the program is bid; program segments are not loaded until they are
mapped in by an SVC.

The Link Edltor defines the slzes and boundaries of the segments. All segments begln on 32-byte
boundaries. The system maps these segments Into the program’s address space In one of three
map positions (positions 1, 2, and 3, in that order). During linking, you must define the segments In
a speciflc order so that each segment can be mapped into the correct position. Procedure
segments must precede the task segment, and program segments must follow the task segment.
You can link any number of program segments to a task, but they must all be in the last map
position.

Exactly which type of segment occuples which map position depends on the type and number of
segments you define. In some cases, only one or two map posltions are used.

1-4 22705229701

Link Editor Overview

LOGICAL ADDRESS SPACE PHYSICAL ADDRESS SPACE
OF EACH PROGRAM

000090

0000

PROCLRE
{PROCED
SEGMENT) o

TASKA
(TASK SEGMENT)

0200

{TASK ———
SEGMENT)

TASKB
(TASK SEGMENT)

0000

PROC 1
(PROCEDURE |g
" SEGMENT)

TASKC
0200
TASKS ({TASK SEGMENT)

(TASK ———
SEGMENT)

0000

PROC | PROCI
(PROCEDURE 4 {SHARED PROCEDURE
SEGMENT) : SEGMENT?

0200
TASKC

(TASK
SEGMENT) -

FFFFF

2282937

Figure 1-1. Example of Programs Sharing Procedures

2270522-9701 1-5

Link Editor Overview

In summary, you can link a program to consist of one of the following combinatlons of segments:
* A single task segment {map position 1)
* One procedure segment (map position 1) and one task segment {map position 2)

* Two procedure segments (one each in map positions 1 and 2} and one task segment
{map position 3} .

. One task segment (map positlon 1) and one or more program segments (all in map
posltion 2)

* One procedure segment (map position 1), one task segment {map position 2), and one or
more program segments (all in map position 3)

Figure 1-2 s an example of a program that uses program segments. During linking, one procedure
segment (PROCA), one task segment (TASKA), and several program segments {SEGA, SEGB, and
SEGC) were defined. When the program |s bid, PROCA and TASKA are loaded into memory and
mapped Into positions 1 and 2, respectively, of the program’s logical address space. As each pro-
gram segment is called durlng execution, It Is loaded Into memory and mapped Into posltion 3 of
the program’s address space. Remember that only one segment in each map position can be ad-
dressed at one time. Thus, If SEGA is exchanged with SEGB, SEGA cannot be addressed.
However, If the task reserves SEGA and it remains in memory, It can be quickly exchanged so that
it Is mapped back into the program’s address space.

Section 5 exp'lélns how to link modules in a structure that uses program segments.

1.3.4 Overlays

In an overiay structure, you can subdivide either the task segment or one or more program

segments into parts called phases. A phase s the smallest functional unit that can be loaded as a

logical entity during execution. The Link Editor produces one output module for each defined

phase. The task or program segment must be designed so that It requires only certain phases to
- be In memory at one time. When a new phase Is needed, It is loaded so that it replaces, or overlays,

a phase that Is currently in memory.

The Link Editor allows you to establish different levels of overlays. As you define each phase, you
must assign a name and a level number to it. Only one phase can be at level 0. This phase Is called
the root phase and contains code that must remain in memory while the task is executing.

You can define any number of phases at levels 1 and higher. These phases are installed as
overlays. Only one phase at each level can be in memory at one time; thus, phases deflned at the
same level must be independent of each other.

A serles of phases, starting with the root phase and including a phase at each successively higher
level, comprises an overiay path. When a specific phase |s referenced, all phases in its path (that
is, all phases between the referenced phase and the root phase) must be in memory. The root
phase can load the overlays as they are needed by issuing SVCs. Alternatively, DNOS provides an
Overlay Manager, which can be linked with a program to load overlays automatlecally In the task
segment,

1-8 22705229701

0000

MAP POSITION !

MAP POSITION 2

MAP POSITION 3

FFFF

2282938

22705229701

Link Editor Overview

PHYSICAL ADDRESS
- SPACE

00000
PROCA
{(PROCEDURE SEGMENT)
LOGICAL ADDRESS SPAGCE
OF PROGRAM
PROCEDURE
SEGMENT &
TASKA
(TASK SEGMENT)
TASK
SEGMENT DA ——
" SEGA
{PROGRAM SEGMENT)
PROGRAM ”
SEGMENTS
o
SEGH N
(PROGRAM SEGMENT)
SEGC
{PROGRAM SEGMENT)
FFFFF

Figure 1-2. Example of a Task Using Program Segments

1-7

Link Editor Qverview

Figure 1-3 shows the structure of a task segment with overlays. The task segment consists of flve
phases at three levels. ROOTPH Is the root phase at level 0 and is loaded Into memory when the
" program is bld. ROOTPH calls both PHASEA and PHASEB; however, since they are independent
of each other, only one needs to be in memory at one time. Thus, when PHASEA is no longer
needed and PHASEB is required, PHASEB can be loaded into the same locatlons as PHASEA. In
the same manner, PHASED can overlay PHASEC when it is needed. However, when either
PHASEC or PHASED Is in memory, PHASEB must algo be In memory.

You can use overlay structures for large programs to Increase the amount of code that can fit into
the loglcal address space of a task or program segment. Each overlay Is loaded into memory only
when It Is calied. The memory allocated for the segment containing overlays is only enough to
accommodate the largest overlay path. Thus, using the example in Figure 1-3, 0400 bytes of
memory would be allocated for the task segment (the sum of ROOTPH, PHASEB, and PHASEC).

Section 6 further explains overlay structures and how to link modules to form such structures.

0000
ROOTFPH LLEVEL O
IRCOT PHASE)
0100
: |
0102 o102
PHASEA . FHASERB LEVEL 1|
0200 0200
| I
0202 v202
PHASEC PHASED LEVEL 2
o400 0300

2282939

Figure 1-3. Example of an Overlay Structure

18 2270522-9701

Link Edltor Overview

1.3.5 Absolute Memory Partlitlons

The Link Editor can structure programs for development systems that will eventually use a com-
bination of read-only memory (ROM) and random-access memory (RAM). The address space of
these systems Is divided into two partitions: one located in the ROM area and one located In the
RAM area. Programs that execute on these systems must be structured so that different portions
of the code can be placed in the correct memory partition.

You can use this type of structure for stand-alone programs only. Since linking a program in this
structure produces absolute code, the program cannot be executed under control of the operating
system. Consequently, the program must handle for itself those services normally performed by
the operating system. Such services include Interrupt handling and device service routines (DSRs)
to interface to peripherals.

To link a program with absolute memory partitions, the source code must include assembier direc-
tives to deflne the program, data, and common segments of each module. The PSEG directive
defines program segments, which generally contain Instructions and nonvarlable data (read-only
code). The DSEG directive defines data segments, which generally contain variable data
(readiwrite data). The CSEG directive defines common segments, which contaln read/write data
that more than one module can share. If these directives are not used, the entire module is defined
as a program segment. The Pascal, COBOL, and FORTRAN compllers automatically define these
segments. ‘

The Link Editor rearranges the segments from each module into three areas In the linked output.
The first area contalns all the program segments from each module, the second contains the data
segments, and the third contalns the common segments. Only cne copy of a given common seg- .
ment Is included in the linked output. The Link Editor can then position the three areas to pre-
scribed boundaries corresponding to absolute locations in each memory partition. Thus, the read-
only code is in one area and aligned on a boundary corresponding to memory locations In ROM,
and the read/write data is aligned on boundarles corresponding to memory locations in RAM.

Figure 1-4 illustrates the structure of an example program and shows how the program wlll even-
tually be loaded into a combination of ROM/RAM. The example program is divided into three
areas. The program area contains read-only code from the assembler-defined program segments.
This code will eventually be programmed into a ROM device; thus, It is aligned on a boundary that
corresponds to ROM locations. The data and common areas both contain read/write data from the
assembler-defined data and common segments. This code will eventually be loaded into RAM
devices; thus, each area is aligned on a boundary that corresponds to RAM locatlons.

Section 7 explalns how to link modules to form this type of structure.

2270522-9701 . 19

Link Editor Overviaw

1000

PROGRAM AREA
(READ—ONLY CODE)

0000

1000

PHYSICAL ADDRESS
SPACE

2000

DATA AREA
(READ/WRITE DATA)

2000

ROM
ADDRESSES SPACE

3000

COMMON AREA
{READ/WRITE DATA)

3000

3FFF_

2282940

1410

4000

FFFF

RAM
ADDRESSES SPACE

Figure 1-4. Example of Absolute Memory Partitioning

2270522-9701

Link Editor Overview

1.4 LINK EDITOR FILES

Operailon of the Link Editor Involves a number of different files; some are used as input and others
are produced as output. Flgure 1-5 shows the relationship of these files to the Link Editor.

As shown in the figure, the link contro! flle is the primary input to the Link Editor. You must create
this file using the Text Editor. The control file contains a control stream that directs the Link
Editor in the linking operation. Optlonally, the control flle may also contain some or all of the ob-
ject modules to be linked. However, the object modules are typically stored In separate files and
are retrieved from the disk as required. The files or directories containing object modules may
also be defined as llbraries for automatic searching.

As output, the Link Editor produces one or more linked output moduies (depending on the type of
structure used) and a listing file. The linked output modules contaln either partially linked code or
completely linked code that can be installed and executed. The listing file provides a summary of
the linking process and the structure produced.

When you execute the Link Editor, you must specify the pathnames of the control file and the flles
to which the Link Editor is to write the linked output and the listing file.

The following paragraphs further describe each of the files assoclated with the Link Editor.

LINKED
OUTPUT
MODULES

LINK
EDITOR

LISTING
FILE

\/_‘

OBJECT

MODULES LIBRARIES

2282941

Figure 1-5. Link Edlitor Files

22705229701 111

Link Editor Overview

1.4.1 Link Control File ‘

As previously stated, you must create the link control flle and build the control stream to direct the
Link Editor. The control stream consists of a set of link control commands that specity which
obJect modules are to be linked and define the structure of the linked output. A number of com-
mands are provided to perform a wide varlety of functlons, Sectlon 2 describes aach command
and its function. Subsequent sections give more details on how to bulld the control stream to
define a particular type of structure.

1.4.2 Object Modules

The object modules are generated by the 990 assembler, a 990 compiler, or the Link Editor {partial
links). They contaln either standard or compressed 990 object code, which consists of ASCII tags
followed by flelds of data. Appendix A describes the object code format.

Object modules are included In the linking process In elther of two ways. You can specifically In-
clude them by ustng commands in the control stream, or the Link Editor can automatically Include
them as the result of a search for unresoived references. ‘

1.4.3 Llbraries
You can define directories and flles that contaln object modules as /ibraries.The Link Editor can
then use these libraries to search for modules to be Included in the linking process.

At least one module must be speclfically included for each segment or phase defined'in the con-
trol stream. If a library that contains this module has been deflned, you need to specify only the
last component of the flle name or the module name rather than the entire pathname. The Link
Editor wili search the defined llbrarles to obtain the specifled module.

The Link Editor automatically resolves the REF and DEF tag symbols between object modules
speciflcally Included in the control stream. However, if some of the REF tags remain unresolved,
the Link Editor also searches defined libraries for modules that contain corresponding DEF tags.
The Link Editor automatically Includes these modules in the link as they are found. If any modules
included In this manner also contain unresoived REF tags, the Link Editor also Includes modules
to satisfy these references. The libraries are searched in the same order In which they are defined
in the control stream.

By using the appropriate commands, you can define specific points In the linking process at
which search operations are to occur. Otherwlse, the Link Editor automatically performs the
search operation at the end of the control stream.

The Link Editor supports two types of library structures: directories of object modules and se-
quentlal files of partlally linked object modules.

1.4.3.1 Directory Librarles. A directory library |s simply a directory of files, with each flle contaln-
ing a separate object module. If directory libraries are to be searched for unresclved REF tag sym-
bols, the file names of modules containing DEF tag symbols must be the same as these symbols.
(Alternatively, you can assign an alias to the file for each DEF tag symbol.} in this case, the Link
Editor searches for a flle with the same name as the symbol referenced by a module included in
the link. For exampie, if an Included module references the symbol ABGC, the Link Editor searches
defined dlrectory librarles for a file named ABC. All modules in file ABC are Included in the link.
The reference is resolved if a DEF tag for ABC is in that file.

When searching for a specifically included module, the Link Editor simply searches directory
libraries for a file with the same name as that specifled in the control stream.

1-12 2270522-9701

Link Editor Overview

1.4.3.2 Sequential Libraries., A sequential library is a sequential file that contains one or more
object modules. Because of the way the Link Editor searches sequential librarles, you must use
partial links to build them. The output of several partial links can be concatenated to form one se-
quentlal library.

The Link Editor searches sequential libraries in a different manner from directory libraries. When
searching for unresolved REF tag symbols, the Link Editor searches each DEF tag in each module
of the library for a value corresponding to that referenced by the included module. When a
reference is resolved, all modules of a previous single partial link are included in the current link-
ing process.

When searching for a specifically included module, the Link Editor searches sequentlal librarles
for a module wlth the same name as that specifled in the control stream. The module name is
assigned In the partial link.

1.4.4 Linked Output Modules

The Link Editor produces cne linked output module for each segment or phase defined in the con-
trol stream. The output modules must be written to a data file or a program flle, depending on the
linking format selected. You can select the format of the output modules by using a command in
the control stream. The three formats supported are as follows:

s Standard 990 object code. This is identical to that produced by the assembler. It con-

slsts of ASCII tags followed by fields of data (further described in Appendix A).
L]

*« Compressed 990 object code. This Is simllar to standard 990 object code except that the
data fields are expressed in binary instead of ASCIll. Compared to standard code, com-
pressed code conserves disk space. it must be written to a data flle that supports binary
data.

. Memory Image. In this format, the output appears exactly as the program appears in
memory. When you select this format, the output modules are installed directly into a
program file or written to an image file. This allows you to bypass the actual Installation
of segments and overlays.

If you select either standard or compressed 990 object code, you must install the linked output
modules yourself, using the appropriate SCl commands. This ¢an be advantageous since the com-
mands to Install segments and overlays allow more options In installation than the Link Editor
allows. Using standard or compressed object code also allows you to retain the symbol tables in
the finked output for symbolic debugging.

1.4.5 Listing File
The Link Editor produces the lIsting file to facilitate debugging. The file includes the following:

* A listing of the control stream
e Alist of parameters entered at Link Editor execution

s A link map, which lists the modules included in the link, along with their origins and
lengths

Subsequent sections further explain the link map and provide examples of it.

2270522-9701 1-13/1-14

_—

2

Link Control Commands

2.1 INTRODUCTION

The link control commands speclfy which modules are to be linked and how they are to be linked.
A particular set of commands forms a control stream, which must be contained in a link control

file. You can build a control stream by using the Text Editor, as described in the DNOS Text Edltor
Reference Manual.

The commands you use and the order In which you use them determine the structure of the iinked
output. Subsequent sections of this manual explaln which commands to use for a particular struc-
ture. This section discusses the general functlons of the commands and then describes the com-
mands individually. Revlew this section o become familiar with the general functions performed
and the syntax of the commands. Once you understand how to build a control stream for a par-
ticular structure, you can refer back to this section for detalls on speciflc commands,

2.2 COMMAND FUNCTIONS

A number of commands are provided to perform a wide variety of functions. For conve-nlence, the
commands can be broken Into functional groups. Table 2-1 lists the commands by group and
briefly describes the function each command performs.

Basic cornmands are fundamental to the operation of the Link Editor. They define segments and
overlays, speclfically include modules In the link, select the format of the linked output, and
specliy the end of the control stream. Some of the commands in this group are required; every
control stream (regardless of the structure desired} must contain either a TASK or PHASE 0 com-
mand, at least one INCLUDE command for each defined segment or phase, and an END command.

Symbol resolution commands ald In the symbol resolution function of the Link Editor. They
define llbraries and specify the polnts in the control stream at which search operations are to
occur for symbol resolution. You can also use the NOAUTO command to inhibit automatic search-
ing of libraries at the end of the control stream.

Partial linking commands are used only for partial links. The PARTIAL command defines the link
as a partial link. The other commands in this group specify the scope of symbols externally de-
fined within the modules to be linked. Symbols within a partial link can be defined as elther global
or local {not global). Global symbols are exiernally defined in the output of the partial link so that
they can be referenced by other modules In subsequent links. Local symbols are not externally
defined in the output and, thus, can only be referenced by modules included in the current partlal
link. To conserve space in the symbol table, you should define as local any symbols not required
in subsequent links.

Output listing commands define optlons for the Link Editor listing flle. These commands allow
you to control the listing of symbols and the page ejects of the link map in the listing flle.

2270522-9701 21

Link Conirol Commands

Shared procedure commands aid in the structurlng of programs that use shared procedures.
These commands allow you to control positioning of assembler-defined segments and to sup-
press generation of linked output.

Symbol processing commands define how symbols contained in the object modules are to be
handled. If the local symbol table for a module is Included In the output during assembly, It can
also be included In the linked output. Including symbol tables allows for symbolic debugging of
the program. However, once the program is thoroughiy debugged, omitting the symbol tables con-
serves space.

Special function commands perform miscellaneous functions, which are not nacessarily related
to each other.

Absolute memory partitioning commands are used only for programs that will be executed on
stand-alone systems. These commands position assembler-defined segments on prescribed
boundaries for eventual ROM/RAM partitioning. The commands In this group cause the Link
Editor to produce absolute locations for the code, which cannot be executed under the control of
the operating system. ' :

Table 2-1. Summary of Link Contrel Commands

Functlonal Group/Command Functlon

Baslc Commands;

TASK Deflnes tha beginning of a task segmant; assfgns
a name to the segment.

PROCEDURE Defines the beginning of a procedure segment;
asslgns a name to the segment.

SEGMENT ’ Defines the beginning of a program segment;
assigns a name and speciffes the map poslition for
the segment.

PHASE Deflnes the beginning of a new phase in an overlay
structure; assigns a lsvel and name to the phase.

INCLUDE Explicitly deflnes one or more object modules to
be included in a segment or phase In the linked
output.

FORMAT) Selects the format of the linked output modules,

END Signifles the end of the control stream.

2:2 2270522-9701

" Link Control Commands

Table 2-1. - Summary of Link Control Commands (Continued)

Functlonal GrouplCommaﬁd Function

Symbol Resolution Commands:

LIBRARY Defines a directory or a sequential file of object
modules as a llbrary.

AUTO Spacifles an automatic search for symbol resolu-
tion at the end of the control stream. (This is the
default condition.)

NOAUTO Inhibits automatic search for symbol resolution.
SEARCH Specifies that a search of defined llbrarles for

symbol resolution is to occur at thls point In the
control stream.

FIND Synopymous with the- SEARCH command. Pro-
vided for compatibility with earller operating
systems.)

Partial Linking Commands:

PARTIAL ‘ . Speclfies a partlal link.

NOTGLOBAL Declares all DEF tag symbols or specifled DEF tag
symbols as local (not global) to the partlal link.

GLOBAL Usad iIn conjunctlon with the NOTGLOBAL com-
mand to declare specifled DEF tag symbols as
global.

ALLGLOBAL Declares all DEF tag symbols from Included

modules as global. (This is the default ¢ondition.)

Quiput Listing Commands:

MAP Allows you to control the listing of aymbols in the
link map.

NOMAP Suppresses generatlon of the link map In the
Nsting flle.

PAGE Speclifies page ejects between the link map of
phases in the listing file. {This is the defauh
condition.)

NOPAGE Suppresses page ejects between the link map of

phases In the lIsting flle.

2270522.971 23

Link Controi Commands

-Table 2-1. Summary of Link Control Commands (Continued)

Functlonal Group/Command

Function

Shared Procedure Commands:

ALLOCATE

DUMMY

Symbol Processing Commands:

SYMT

NOSYMT

Special Function Commands:

ADJUST

SHARE

ERROR

NOERROR

LOAD

NOLOAD

Absolute Memory Partitioning Commands:

PROGRAM
DATA
COMMON

ABSOLUTE

Allocates space for assembler-deflned data and
common segments already Included In the link,

Suppresses generatlon of al! or part of the linked
output,

7 Causes the Link Edltor to include the symbol table

In the linked output. (This is the defauit condltion
when standard or compressed object code format
is used))

Causes the Link Edltor to omit the symbol table in
the linked output.

Aligns a phase or module within a phass on a
speclfled boundary,” ;

Specifles modules that are 1o share the same data
area.

Allows the Link Editor to continue processing
when an error occurs.

Terminates processing of the control stream when
an error occurs. (This ts the default condition.)

Causes the Overlay Manager to be included In the
linked output.

Causes the Overlay Manager to be omitted from
the linked output. (This is the defaull condltion.)

Defines the starting locatlon of the program area.
Deflnes the starting locatlon of the data area.

Defines the starting location of the common area.
Speclfles a link of absolute memory locations;

speclfles a special syntax definition for the
PHASE command,

24

2270522-9701

Link Control Commands

2,3 COMMAND DESCRIPTIONS

You can enter commands in the control stream by typing the command name, followed by its
operands if any are required. When entering commands, you can type either the entire command
name or just the first four characters of the command name. (This also applles to the PROGRAM
operand in the PHASE, SEGMENT, and TASK commands.) You can begin the command in any
column, but each command must be on a separate line (record). The command name must be fol-
lowed by at least one blank and then any required operands. If you enter more than one operand,
you must separate them with commas. You can enter comments in the control stream elther
following the command and its operand(s) or on a separate line; however, a semicolon (;) must
precede each comment.

The following paragraphs describe each command individually. For ease of reference, the com-
mands are presented In alphabetlcal order. Most of the command descriptions consist of a func-
tlonal statement, a syntax definition, notes on command usage, and one or two examples. In some
cases, the notes and examples are omitted because the command requiraes little explanation. The
examples in this section show only partial control streams; subsequent sections show complete
control streams,

The syntax deflnitions use the following notations:

¢ Iltems in uppercase must be entered exactly as shown except for command names,
which you can enter in the four-character abbreviated form.

* Items in lowercase Italics indicate a type of operand. F{eplacé this with a specific
operand of the appropriate type.

. Items in square brackets ([)) indicate optional operands; items not enclosed in square
brackets are required.

* ltems in braces {{}) indicate a choice of enclosed operands. The choices are separated
by slashes {/). You can enter only one of the choices.

* An ellipsis (...) Indicates that you can repeat the preceding operand as many times as
necessary. You must separate the operands with commas.

You can use synonyms and/or logical names in the control stream to specify pathnames. Some of

the operands can be expressed as hexadecimal numbers by preceding the number with either 0
or >,

2.3.1 ABSOLUTE Command

The ABSOLUTE command directs the Link Editor to perform a tink with absolute memory loca-
tions. This command specifies a special syntax definition for the PHASE command, allowing
mulliple ouiput modules to be produced in an absolute link,

Syntax Definition

ABSOLUTE

2270522-9701 2.5

Link Control Commands

Usage

The ABSOLUTE command is primarily intended for special microprocessor applicatlons. You can
use It when separate modules (phases) are required to load object code for memory-paging hard-
ware or to program programmable read-only memory (PROM) devices.

2.3.2 ADJUST Command

The ADJUST command adjusts the location of a phase or a module within a phase so that it Is
allgned on a specified boundary. Adjustment on a boundary Is useful in debugging for ease of ad-
dress calculation. You can also adjust modules to leave space for future patches to the program.

Syntax Definition
ADJUST [n]

The n operand Is a decimal number less than 16 that specifles the adjustment In bytes as a power
of two, For example, an operand of 4 causes the Link Edttor to allgn the phase or module on the
next 16-byte boundary. A value greater than 15 causes an error. When the operand s omitted or
equal to zero, alignment is on the next word boundary.

Usage

When an ADJUST commaﬁd appears immediately before a PHASE command, the next phase and
all subsequent phases of the same level and with the same parent node are aligned on the
specified boundary, relative to the beginning of the program.

When an ADJUST command follows a PHASE command but precedes an INCLUDE command, the
next module In that phase is aligned on the specified boundary, relative to the beginning of the
phase. If an ADJUST command follows a PHASE command but precedes all INCLUDE commands
In the phase, the effect is the same as when the ADJUST command precedes a PHASE command.

You should adjust all phases at the same level with the same parent node so that they are ailgned
on the same boundary. Otherwise, phases that overlay each other could be assigned different load
points and unpredictable results could occur.

Examples
ADJUST 5 This example aligns both PHASEA and
PHASE 1, PHASEA PHASEB on the next 32-byte boundary
INCL VOL1.0BJ.MOD2 reiatlve to the beginning of the program.
PHASE 1, PHASEB
INCL VOL1.0BJ.MOD3
PHASE 1, PHASEA This example aligns only MOD3 of
INCL VOL1.0BJ.MOD2 PHASEA on the next 64-byte boundary
ADJUST 6 relative to the beginning of PHASEA,
INCL VOL1.0BJ.MOD3

2.6 : 2270522-9701

Link Control Commands

2,3.3 ALLGLOBAL Command

The ALLGLOBAL command declares all external definitions (DEF tag symbols) included in a
partial link to be global symbols. This is the default conditlon; thus, the ALLGLOBAL command is
optional. Global symbols are externalty defined In the linked output moduie and can be referenced
by modules in subsequent links.

Syntax Definition
ALLGLOBAL
Usage

The ALLGLOBAL command can only be used In partial links. The command has the same effect as
a GLOBAL command with all the DEF tag symbols as operands or with no operands. By using the
NOTGLOBAL command, you can make certain symbols or all symbols exempt from global
definition.

2.3.4 ALLOCATE Command

The ALLOCATE command allocates space for the assembler-deflned data and common segments
(DSEGs and CSEGs) from modules already Inciuded in the link (preceding the ALLOCATE com-
mand). The Link Edltor places the DSEGs and CSEGs from procedure modules In the task seg-
ment. The ALLOCATE command helps ensure that the DSEGs and CSEGs for a shared procedure
are placed at the same locations in each task.

. Syntax Definition
ALLOCATE
Usage

The ALLOCATE command cannot be used in partial links. It must appear In the task segment (after
a TASK or PHASE 0 command and before a PHASE 1 command).

Normally, the Link Editor places all the program segments (PSEGs) from Included modules first,
followed by all the DSEGs and then all the CSEGs. The ALLOCATE command directs the Link
Editor to allocate space for these segments as If no more object modules were to be Included in
the link. Thus, the PSEGs, DSEGs, and CSEGs for modules included after the ALLOCATE com-
mand are placed after the last CSEG from the modules included before the ALLOCATE command.

The Link Editor no longer collects (groups) PSEGs and DSEGs for modules included after the
ALLOCATE command, Any new GSEGs are st placed after all the DSEGs from modules Included
after the ALLOCATE command.

The ALLOCATE command works properiy only when all read/write data Is contained in DSEGs or

CSEGs. The Pascal, COBOL, and FORTRAN compilers automattcally generate code segmented In
this manner.

2270522-9701 2.7

Link Controf Commands

When using the ALLOCATE command, observe the following:

. Be careful when using CSEGs with this command. CSEGs referenced before the
ALLOCATE command must not have elements added to them by modules included after
the ALLOCATE command.

®* The procedure to be shared must not reference any symbols occurring in modules In-
cluded after the ALLOCATE command.

Examples
PROC PROC1 In this example, the Link Edlitor allocates
INCL VOL1.0BJ.MOD1 space for all PSEGs, DSEGs, and CSEGs
TASK TSK1 from MOD1, MOD2, and MODS3 first. Then
INCL VOL1.0BJ.MOD2 it allocates space for the PSEGs, DSEGs,
INCL VOL1.0BJ.MOD3 and CSEGs from MOD4.
ALLOCATE
INCL VOL1.08J.MOD4

23.5 AUTO Command

The AUTO command specifies automatic searching of deflned librarles for symbol resolution.
This Is the default condition; thus, the AUTO command is optional.

Syntax Definition

AUTO
Usage
Automatic searching occurs at the end of the control stream if any unresolved references remain
(regardless of whether SEARCH and FIND commands are also used). You must define one or more
libraries by using the LIBRARY command before automatic searching can take place. Refer to the

description of the LIBRARY command for an explanation of how the two types of lIbrary structures
are searched.

2.3.6 COMMON Command
The COMMON command defines the starting address for a common area in the linked output. This

area contains speclfied assembler-defined common segments (CSEGSs) from modules included In
the link.

Syntax Definition

‘COMMON base,name [,name . . .,name]
The base operand specifies the starting address of a common area and can be expressed as either
a decimal or hexadecimal number up to five digits long. Alternatively, you can specify the name of
a CSEG that was specified in a previous COMMON command. This signifies the continuation of a
previously defined common area.

Each name operand specifies the name of a CSEG. The GSEGs are placed in the order specified in
the command.

2.8 2270522-9701

Link Control Commands

Usage

The COMMON command can only be used for programs with absolute memory partitions; it can-
not be used in partial links. In addition, the COMMON command is valld only when used In con-
junctlon with the PROGRAM command and Is ignored If used alone.

You must specifically identify within the command any CSEGs that are to be loaded at the
specified address. Otherwise, they are placed after the assembler-defined data segment (DSEG)
from the last included module. You can use more than one COMMGCN command in the control
stream, and you can perform a continuation by repeating the command using a previously named
CSEG Instead of a starting location.

Examples
COMMON >1000,COMA Places CSEG COMA at location >1000.
COMMON >1000,COMA,COMB Places CSEG COMA at location >1000,
followed by CSEG COMB.
COMMON COMB,COMC | Continues the common area deflned in the

previous example by placing CSEG COMC
after CSEG COMB.

2.3.7 DATA Command ‘
The DATA command defines the starting address for a data area In the linked output. Each data
area contalns the assembler-defined data segments (DSEGs) from modules included after one
DATA command but before a subsequent DATA command.

Syntax Definition
DATA base

The base operand is the starting address of the data area and can be expressed as elther a decimal
or hexadecimal number up to five digits long.

Usage

The DATA command can only be used for programs with absolute memory partitions; it cannot be
used In partial links.

The DATA command can appear more than once in the control stream. The first DATA command-
should appear before the first INCLUDE command in the control stream; otherwise, unpredictable
results can occur. If you omit the DATA command, the starting address for each data area defaults
to the end of the corresponding program area.

Examples
DATA 01000 Begins data area at location >1000.
DATA 4096 Same as preceding example.

2270522-9701 . 2-9

Link Control Commands

2.3.8 DUMMY Command

The DUMMY command causes the Link Editor to suppress the linked output for the segment In
which it appears. If the DUMMY command precedes the first PROCEDURE, TASK, or PHASE com-
mand in the control stream, the Link Editor does not produce any linked output. The DUMMY com-
mand is useful when Hnking shared procedure segments or when only a link map is required.

Syntax Definition

DUMMY
Usage
The DUMMY command cannot be used in partial links.
You can use the DUMMY command to suppress the linked output of a shared procedure in the cur-
rent link. When using image format, you cannot dummy a procedure segment that has not been
previously installed on either the specified program flle or the .S$SHARED program flle.
You must dummy individual segments in the order defined in the control stream. For example,
when linking two procedures, the second procedure can be dummied only if the first procedure is
dummied. Overlays cannot be dummied,
No warning messages for unresclved references are generated for a dummied segment. You

should compare the origin and length {from the link map) of any dummied procedures with the
orlgin and length of the actual Installed verslon of the procedure.

Examples
DUMMY This example uses the DUMMY command to
PROC PROC1 suppress generation of the linked output
INCL VOL1.0BJ.MOD1 for all segments.
TASK TSK1
INCL VOL1.0BJ.MOD2
FORM IMAGE This example uses the DUMMY command to
PROC PROC1 link a previously Installed procedure {PROC1)
DUMMY to a new task (TSK2). No linked output
INCL VOL1.0BJ.MOD1 is generated for PROC1 but all references
TASK TSK2 are resolved,
INCL VOI1.0BJ.MOD2

2.3.9 END Command
The END command signifies the end of the control stream.

Syntax Definition
END
Usage

The END command must be the last command in every control stream.

2.10 ' 2270522.9701

Link Control Comiands

2.3.10 ERROR Command

The ERROR command allows the Link Editor to continue processing the link control commands
when an error occurs. You can use this command to identify all the errors in the control stream at
one time. When errors occur, you must correct the errors and relink the program before you can in-
stall or execute it.

Syntax Definition
ERROR
Usage

When the ERROR command is used and an error Is encountered, the Link Editor attempts to
recover from the error and to complete the link operation by not processing the line in which the
error occurs. Error messages are generated for all errors encountered. If the Link Editor is unable
to process an INCLUDE command, processing always terminates.

The ERROR command should be the first command In the control stream so that it Is processed
before any errors occur.

2,3.11 FIND Command -
The FIND command directs the Link Editor to search defined librarles for unresolved references at
a particular point In the control stream. The search operation occurs at the point in the control
stream where the FIND command appears rather than at the end of the control stream.
Syntax Definition | .

FIND [name. .., name]

The name operands are the pathnames of the libraries that are to be searched for unresolved
references. The order of operands specified determines the order in which libraries are to be
searched. If you do not specify any operands, the order in which you define the librarles, using the
LIBRARY command, determines the order of the search.

Usage

The FIND command functions the same as the SEARCH command and is listed as a SEARCH
command in the listing file. It is provided for compatibility with earlier operating systems.

Refer to the description of the LIBRARY command for an explanation of how the two types of
[ibrary structures are searched.

2270522-9701 2-11

 Link Control Commands

2.3.12 FORMAT Command

The FORMAT command defines the format of the linked output. You can select one of three for-
mat options. _

Syntax Definition
FORMAT {ASCI/ICOMPRESSED/IMAGE[,REPLACE]], priorityl}

The ASCII operand specifies standard 990 object code. Linked output In this format must be writ-
ten to a data file and installed later in a program file. This is the defauit format selected if you do
not use the FORMAT command or its operand.

The COMPRESSED operand specifies compressed 990 object code. Linked output In this format
must be written to a data file that supports binary data. The linked output can subsequently be in-
stalled in a program file. This format conserves space compared to standard 990 object code.

The IMAGE operand specifies memory image format. Linked output In this format must be written
directly to a program file or an image flle.

When you select the IMAGE option, you can also enter the REPLACE and priorily operands.
REPLACE causes new segments and overlays to replace any existing ones of the same names In
the speclfied program file. The priority operand defines the priority (0, 1, 2, 3, or 4) at which the task
Is to execute. The default for the priority Is 4.

Usage

You can use the IMAGE option to Install segments and overlays In a program file. You can also use
it to write the linked output to an image file. You cannot use the IMAGE option to Install privileged,
system, or memory-resident tasks in a program file. Once a task Is installed, you can modify it to
be a privileged, system, or memory-resident task through use of the Modify Task Segment Entry
(MTE) command. {Refer 1o the DNOS System Command Interpreter (SCI) Reference Manual for a
description of this command.)

It you do not select the IMAGE option, you must write the linked output to a data file and then In-
stall the output module(s) in a program file, using the appropriate SCl command(s). The SCI com-
mands allow more options in the installation process than the Link Editor allows.

Exampies
FORMAT COMPRESSED : Produces compressed 990 object code in the
linked output.
FORMAT IMAGE,REPLACE,3 Produces memory image code, replacing al

segments and overlays defined in this link
with those of the same name in the specified
program file. It also assigns the task a pri-
ority of 3,

212 2270522-9701

Link Control Commands

2,3.13 GLOBAL Command
The GLOBAL command identifles symbols that are to be externally defined {made global) in the

output of a partial tink. Externally defined symbols can be referenced by modules in subsequent
links.

Syntax Definition

GLOBAL [symbol, .., symbol]
Each symbol operand specifles a symbol that Is to be processed as a global symbol. The com-
mand may include several operands, limited only by the maximum size of the record. If you do not
specify any operands, the command functions as an ALLGLOBAL command.

Usage

The GLOBAL command can only be used in partial links, Normally, you should use it In conjunc-
tion with the NOTGLOBAL command to exempt certain symbols from the not global definition,

Examples
| NOTGLOBAL This example first declares all symbols in
GLOBAL VALA,VALB,VALC the link as local (not global). Then, the
GLOBAL command declares symbols
. VALA, VALB, and VALC as global. Thus,

modules - In subsequent links can
reference symbols VALA, VALB, and
VALC. No other symbols are externally
defined in the linked output.

2.3.14 INCLUDE Command
The INCLUDE command explicitly defines object modules that are to be included in the link.

Syntax Definition
INCLUDE {name.. ., name}

Each name operand speciftes an object module to be included in the link. If an object module is
not In a defined library, the name operand must be the complete pathname of the file containing
the object moduie. If the object module is in a defined library, the name operand can be just the
file name (directory library) or module name (sequential library). In this last case, the name
operand must be enclosed in parentheses; the Link Editor searches the defined librarles for the
correct file or module (see LIBRARY command), .

If you do not specify a name operand, the object modules to be included must be In the control
file, immediately following the INCLUDE command. In this case, each object module must be ter-
minated with a record that has a colon (:) in the first character position. The last module must be
followed by an end-of-record marker {/*). S

2270522-9701 2-13

Link Conirol Commands

Usage

At least one INCLUDE command must follow each PROCEDURE, TASK, SEGMENT, and PHASE
command in the control stream. The INCLUDE command defines the object module(s} for that
segment or phase. :

If a procedure segment is being linked to a task and the object modules Included in the procedure
segment contain assembler-defined data or common segments (DSEGs and CSEGs), the
INCLUDE command is not required after the TASK command. In this case, the Link Edltor Includes
the DSEGs and CSEGs from the procedure modules in the task segment of the linked cutput.

Examples

PROGC PROCH This example deflnes a procedure segment

INCL VOL1.0BJ.MOD1 named PROC1. The module(s) included in
PROGC1 is obtained from the file MOD1 In
directory VOL1.0BJ.

LIBR VOL1.08J This example defines a task segment named

TASK TSK1 TSK1. The moduie({s) iIncluded In TSK1

INCL (MOD2) is obtained by searching a directory ltbrary

(VOL1.08BY) for a flle named MOD2 or a se-
quentlal library for a module named MOD2.

L}
'2.3.16 LIBRARY Gornmand
The LIBRARY command defines dlrectorles or sequential flles of object modules as Ilbraries
Directory librarles can consist of any level of directory with files containing object modules pro-
duced by the assembier, a compller, or the Link Editor (from partial links). Sequentiat librarles
must conslst of partially linked output modules. You can concatenate the output of several partial
links to form one sequentlal library.

Once deflned, a library can be used for automatic searching of unresolved references or in con-
Junction with the INCLUDE command. (See INCLUDE command.)

Syntax Definition

LIBRARY name|, name. . ., name]
Each name operand is the pathname of a directory or file to be defined as a library.
{Jsage

When searching llbraries for unresolved references, the Link Editor searches the two types of
library structures in different ways:

. For directory libraries, the Link Editor searches for a file with the same name as that
referenced by an included module.

. For sequential libraries, the Link Editor searches each DEF tag in each module of the
file for a value corresponding to that referenced by an included module.

2.14 2270522-9701

Link Control Commands

Certain constraints apply to the use of sequential libraries. Only one pass is made through a
sequentlal library to resolve references during a single search operation. Therefore, If one modute
in the library references a symbol in a previous module in the llbrary, that reference is not resolved
unless the referenced module has already been included In the Jink. In this case, you must use the
‘SEARCH command to force another search operation to resolve the reference. (See SEARCH
command.)

Examples
LIBR VOL1.APPL.SEQLIB "~ Defines file SEQLIB as a sequential library.
LIBR VOL1.A0OBJ,VOL1.BOBJ Defines directories AOBJ and BOBJ as direc-

tory libraries.

2,3.16 LOAD Command

The LOAD command causes the Link Editor to include the Overlay Manager in the linked output.
The Overlay Manager performs automatic overlay loading during execution of a program with
overlays. You can use the Overlay Manager for loading overlays only in the task segment, not In a
program segment. When the Overlay Manager is not included In the link, the program must issue
supervisor calls (SVCs) to load the overlays.

Syntax Definition
LOAD
Usage

The LOAD command is valid only when you select memory image format. You cannot use It in
partial links.

Use of the Overlay Manager requires certain consliderations in the structure and coding of
overlays. (Refer to Sectlon 6.)

2.317 MAP Command
The MAP command allows you to control the listing of symbols in the link map. You can specify
that only referenced symbols be listed, or that only symbols that do not begin with a specified
character string be listed. Using the MAP command, you can suppress the listing of external sym-
bois In run-time llbrary subroutines,
Syntax Definition

MAP {REFSINO'string'(,NO'string’. . .,NO'string'l}
The REFS operand specifies that only referenced symbols are to be listed.

in the NO'string’ operands, string specifies the beginning character string of the symbols that are
not to be listed.

2270522-9701 2-15

Link Confrol Commands

Examples
MAP REFS Lists only referenced symbois.
MAP NO'‘S$ NO'CXS' Does not list symbols that begin with S$ or

CXs.

2.3.18 NOAUTO Command

The NOAUTO command inhibits all aulomatic searching of defined librarles for symbol resolution.
You should use the NOAUTO command when automatic searching Is not needed. This saves time
in executing the Link Editor.

Using the NOAUTO command also allows you to explicitly control library searching for unresolved
references through use of SEARCH and FIND commands. {See SEARCH command.)

Syntax Definition

NOAUTO
2.3.19 NOERROR Command
The NOERROR command causes the Link Editor to terminate processing of the control stream
when an error occurs. This Is the default condition; thus, the NOERROR command Is optional. An
error message is generated for the first error encountered.
Syntax Definition

NOERROR
2,3.20 NOLOAD Command
The NOLOAD command inhibits the incluslion of the Overiay Manager in the linked output. This Is
the default condition; thus, the NOLOAD command is optlonal. When the Overiay Manager is not
included in the linked output, the program must issue SVCs to load overlays.
Syntax Definition

NOLOAD
2.3.21 NOMAP Command
The NOMAP command causes the Link Editor to suppress generation of part of the listing file.
You can use it when a program is completely debugged and the Information In the link map is not
needed.
Syntax Definition

NOMAP

Usage

2-16 2270522-9701

Link Control Commands

When you use the NOMAP command, the Link Editor still writes the following information to the
listing file:

. Length of the segments and phases

Unresolved references
. Release number of the Link Editor

. Number of output records if memory Image format is selected and the linked output is
written to a program file

2,3.22 NOPAGE Command
The NOPAGE command specifies that page ejects do not separate the link maps for each deflned

segment or phase. You can use the NOPAGE command to save paper on hard copies of the lIsting
file.

Syntax Deflnition
NOPAGE

2.3.23 NOSYMT Command

The NOSYMT command causes the Link Editor to omit the symbol tables from the included
modules in the linked output. Use of the NOSYMT command provides for more compact object
_ code but does not allow symbolic debugging.

Syntax Delinition

NOSYMT
Usage
The NOSYMT command can appear anywhere in the control stream except when overlays are
used. In this case, the NOSYMT command must appear in the root phase (followlng the TASK,
PHASE 0, or SEGMENT command but before a PHASE 1 command).

2.3.24 NOTGLOBAL Command .

The NOTGLOBAL command declares that either all externally defined (DEF tag) symbols or Just
specified DEF tag symbols are to be processed as local {not global) symbols in a partial link. Local
symbols are not externally defined In the partlally linked output; they can be referenced only by
modules included in the current partial link. You ¢an use the NOTGLOBAL command to reduce
the symbol table size for subsequent links.

Syntax Definition
NOTGLOBAL (symbol. . .,symbol]
Each symbol operand identifies a symbol that is to be processed as a local symbol. The command

can include several operands, limited only by the maximum size of the record. If you do not specify
any operands, all symbols are processed as local.

2270522-9701 217

Link Control Commands

Usage

The NOTGLOBAL command can be used onfy in partial links. The control stream can have mora
than one NOTGLOBAL command.

When you use the NOTGLOBAL command to declare all symbols as local, you can then use the
GLOBAL command to exempt certain symbols from the local deflnition.

Examples
NOTGLOBAL Processes all externally defined symbols as not globatl
{except those speclfied In a GLOBAL command).
NOTG ABC,EFG Processes symbols ABC and EFG as not global. All other
externally defined symbols are processed as global
symbols.,

2,3.25 PAGE Command
The PAGE command causes page ejects to separate the beginnings of the link maps for each
phase. This is the default condition; thus, the command is optional.
Syntax Definition

 PAGE
2.3.26 PARTIAL Command
The PARTIAL command directs the Link Editor to perform a partlal link. Partial linking allows you
to link a set of modules so that the entire set can be used in subsequent links. You can also use
partial links to bulld sequential libraries or reduce the symbol table size for subsequent links.
Syntax Definition

PARTIAL

Usage

The output of a partial link is not executable and must be Ilnked agaln without the PARTIAL com-
mand before the program can be loaded and executed.

The PARTIAL command causes the Link Editor to do the following:

. Resolve all external references (REF tags) externally defined (matching DEF tags) by
modules included In the partiat link

. Retain all external definitions {DEF tags) in the partial link as an external definltion in

the partially linked output, subject to GLOBAL, NOTGLOBAL, and ALLGLOBAL
commands

218 2270522-9701

Link Comtrof Commands

* Collect all the data segments (DSEGs) from the included moduies and retain the
common segment (CSEG) tags

. QOutput one data area, which is the total of all input DSEGs, subject to the SHARE
command

. Resolve all SHARE references

Partial linking is allowed for a single task segment only. If partlal linking of procedure segments,
program segments, or overlays Is required, each segment or phase must be linked separately and
defined as a task segment in the partlal link. You can include the output of the partial link in any
segment or phase in subsequent links. The PARTIAL command must appear before the TASK or
PHASE 0 command in the control stream.

2.3.27 PHASE Command

The PHASE command defines the beginning of a new phase in an overlay structure and assigns a
level number and name to the phase. Optionally, the PHASE ¢command can also assign a speclflc
load pomt to-the phase.

When used In conjunction with the ABSOLUTE command, the PHASE command requires a
special syntax definitlon. This is given following the normal syntax deflnition.

Syntax Definition
PHASE /evel, name [[PROGRAM base][,ID nj]

The 'Ievel operahd defines the level of the phase. The PHASE 0 command defines the root
{memory-resident) phase. The level numbers for subsequent PHASE commands must increase in
unit steps within a path, with alternate phases that ioad at the same polnt having the same level
number,

The name operand specifies the name of the phase. This name can consist of from one to eight
alphanumeric characters, the first of which must be alphabetlc.

The base cperand following PROGRAM specifies the load point of the phase. If you omit this
operand, the Link Editor assigns a load point to the phase. The assigned load point is at the next
word past the end of the preceding phase in the same path. If the phase is defined at ievel 0, the
assigned load point is at the next 32-byte boundary past the preceding segment. You should use
the same basse for all phases at the same level and with the same parent node.

The n operand following ID assigns an |D {o the phase. This operand is used only for overlays and
with image format; otherwise, It is ignored. If you omlt this operand, the Link Editor assigns an
available ID from the specified program flle.

Syntax Definition wirh ABSOLUTE Command

PHASE fevel,name,PROGRAM base[,DATA base]

2270522.9701 - 219

Link Controf Commands

When used with the ABSOLUTE command, the name, fevel, and PROGRAM base operands are the
same as In the normal syntax definition; however, the PROGRAM base operand is required. The
DATA base operand specifies the starting address (load point) of the data area for the phass. If you
omit this operand, the Link Editor assigns a load point to the data area. The assigned load point is
at the next word past the end of the program area for that phase.

Usage

You must follow each PHASE command with an INCLUDE command to define the module{s) In
that phase. You must also define a complete path before defining another path. For example, if
you are going to define two phases (PHASA and PHASB) at level 1, you must define all the phases
that include PHASA In their path before you define PHASB in the control stream,

PHASE 0 and TASK commands are semantically identical; thus, one and only one of these two
commands must appear in every control stream.

Examples
PHASE 0,MAIN] This example shows an overlay structure
INCL VOL1.0BJ.ROOT that includes a root phase (MAIN) and four
PHASE 1,PHASA) overlays. PHASA and PHASB are at the
INCL VOL1.0BJ.MODA same level (1) and will be assigned the
PHASE 2,PHASA1 same load point. PHASA also calls two
INCL VOL1.0BJ.MODA1 overiays at level 2 (PHASA1 and PHASA2).
PHASE 2,PHASEA2 ' ' :
INCL VON.08J.MODA2
PHASE 1,PHASB
INCL VOL1.0BJ.MODB

2.3.28 PROCEDURE Command
The PROCEDURE command defines the beginning of a procedure segment and assigns a name to
the segment.
Syntax Definition
PROCEDURE name
The name operand specifies the name of the procedure.
Usage
Each PROCEDURE command must be followed by an INCLUDE command to deflne the module(s)

in that procedure segment. No more than two PROCEDURE commands can appear in the control
stream, and they must precede the TASK or PHASE 0 command.

Procedure segments usually contain only executable code, Reentrant procedures can be shared
among several tasks. When linking a previously Installed procedure to a task, you can use the
DUMMY command to suppress generation of linked output for the procedure segment. (See
DUMMY command.)

2-20 2270522971

Link Control Commands

Examples
PROCEDURE FORLIB - Defines procedure FORLIB.
INCL VOL1.0BJ.MODS
PROC RUNLIB Defines procedure RUNLIB,
INCL VYOL1.0BJ.MODS

2.3.29 PROGRAM Command

The PROGRAM command defines the starting address for a program area In the linked output,
Each program area contains the assembler-defined program segments (PSEGs) from modules In-
cluded after one PROGRAM command but before a subsequent PROGRAM command.

Syntax Definitlon

PROGRAM base

The base operand is the starting address of the program area and can be expressed as a decimal
or hexadecimal number up to five digits fong.

Usage

The PROGRAM command can only be used for programs with absolute memory partitlons; it
cannot be used in partial links.

The PROGRAM command may appear more than once In the control streafn. The first PROGRAM
command should appear before the first INCLUDE command In the control stream; otherwise,
unpredictable results can occur,

Use of the PROGRAM command without the DATA and COMMON commands causes a linked out-
put that is to be loaded at the specified address (base).

Examples
PROGRAM 01F00 Begins program area at location >1F(0Q.
PROG 7936 Same as preceding example.

22705229701 2.21

Link Control Commands

2.3.30 SEARCH Command

The SEARCH command directs the Link Editor to search defined llbrarles for unresolved
references at a particular point in the control stream. The search operatlon occurs at the point in
the control stream where the SEARCH command appears rather than at the end of the control
stream. Thus, using the SEARCH command gives you more control of search operations.

Syntax Definition
SEARCH [name. . .name]

The name operands are the pathnames of the llbraries that are to be searched for unresoclved
references. The order of operands specified determines the order of the search. {f you do not
specify any operands, the order In which librarles are defined by use of the LIBRARY command
detarmines the order of the search.

Usage

The SEARCH command can appear anywhere in the control stream and can appear more than
once; however, it does not work within a procedure segment. The SEARCH command applies only
to the segment or phase in which It appears; that Is, the Link Editor searches only for unresolved
references from moduiles included between the SEARCH command and the Immediately
preceding TASK, SEGMENT, or PHASE command. The Link Editor alsc searches for unresolved
references caused by modules brought in by a search operatlon.

When modules are included as the result of a search operation, they are included at the point at -
which the search operation occurs. Use of the SEARCH command allows you to control the order
in which these modules are included. For example, If a program requires a particular module to be
the last module in the linked output, a SEARCH command can be placed just before the last
INCLUDE command that deflnes this moduie. Automatic searching still occurs at the end of the
control stream if unresolved references remain and you do not use the NOAUTO ¢command.

You can also use the SEARCH command to obtain the correct module for multiply-defined ex-
ternal symbols. For example, If several llibrarles have been deflned and each ¢contains a moduie
that defines a particular symbol, you can speclfy which library Is to be searched for the definition
you want, Alternatively, you can specify a search of llbraries prior to explicitly including a module
that also contains a definition for a particular symbol.

Refer to the description of the LIBRARY command for an explanation of how the two types of
llbrary structures are searched. '

Examples
SEARCH VOL1.0BJ Searches library VOL1.0BJ for unresclved references.
SEARCH Searches defined llbraries for unresolved references.

2-22 ‘ 22705229701

Link Control Commands

2.3.31 SEGMENT Command
The SEGMENT command defines the beginning of a program segment In the linked output. The
task segment must issue the approprlate SVCs to load the program segments.

Syntax Definition
SEGMENT map,name[,PROGRAM base][,ID n]

The map operand speclfies the map position of the program segment. This must always be the last
map position of the program {elther 2 or 3). Thus, If the program does not Include a procedure seg-
ment, the map position for the program segment(s) must be 2 (the task segment occupies map
postion 1}. If the program includes a procedure segment, the map position for the program seg-
ment(s) must be 3 (the procedure and task segments occupy map positlons 1 and 2, respectively).

The name operand speclfies a name for the segment. The name can consist of from one to eight
alphanumeric characters, the flrst of which must be alphabetic.

The base operand followlng PROGRAM specifies the load polnt of the segment. If you omit this
operand, the Link Editor assigns a load polint, which is at the next 32-byte boundary past the end of
the task segment. If you use this operand for one program segment, you should use it with the
same base for all program segments defined. Otherwise, the Link Editor may assign d!fferent toad
points for each program segment and unpredictable results can occur.

The n dperand following ID assigns an ID to the segment. This operand is used only with image
format; otherwlse, it is Ignored. If you omit this operand, the Link Editor assigns an avallable 1D
from the specifled program flle. '

Usage

The SEGMENT command must be followed by an INCLUDE command to define the modules in the
program segment. The SEGMENT command cannot be used If two procedure segments are de-
fined in the control stream.

Any number of SEGMENT commands can appear in the control file. However, they must all appear
after the TASK or PHASE 0 command, and they must all be deflned at the same map position,

Examples
SEGMENT 2,SEG1 This example defines two program segments
INCL VOL1.0BJ.MOD1 at map position 2.
SEGMENT 2,8EG2
INGL VOL1.08J.MOD2

2270522-9701 2:23

Link Control Commands

2.3.32 SHARE Command
The SHARE command specifies modules that are to share the same data area. This data area con-

tains the assembler-defined data segments (DSEGs) in the moduies. in some cases, youcanuse a
shared data area to save space.

Syntax Definition
SHARE name,name[,name. . ..name)

The name operands specify the IDs of the modules that are to share the same data area. The
module IDs are defined by the IDT assembler directive.

Usage

The size of the DSEG from the first module specified defines the maximum size of the shared data
area.

Several SHARE commands can appear in the control stream. You can continue SHARE commands
by repeating any module name specified in a previous SHARE command. The SHARE command
appiles only within a phase, and it cannot cross a phase boundary.

Examples
SHARE MOD1,MOD2,MOD3 Specifies that modules MOD1, MOD2, and
. MOD3 wilii share_ the same data area. :
SHARE MOD3,MOD4) Continues from the preceding example,

2.3.33 SYMT Command

The SYMT command causes the Link Editor to include the symbol tables for the object modules in
the linked output to allow for symbolic debugging. This Is the default condition when image for-
mat is not used; thus, the command is optional. Object modules contaln local symbol tables only
if you selected the SYMT assembier option during assembly.

Syntax Definition
SYMT
Usage

The SYMT command cannot be used if memory image format is selected. If you want the symbol
tables, you must specify standard or compressed object format and install the linked output
modules using the appropriate SClI commands.

The object modules generated by the assembler may include symbol tables consisting of G, H,
and J tag-character fields. The Link Editor includes these tags in the linked output unless you use
the NOSYMT command in the control stream. To identity the module in which the symbol oc-
curred, the Link Editor inserts an | tag followed by a four-character hexadecimal field and an eight-
character ASCIl field. These flelds contain the program relocatable address and the module name,
respectively. (Refer to Appendix A for further explanation.)

2.24 2270522-9701

Link Control Commmands

2.3.34 TASK Command)

The TASK command defines the beginning of a task segment in the linked output and assigns a
name to the task. The flrst module included in the task segment must contain the entry vector for
the program.

Syntax Definition
TASK [name][,PROGRAM base]

The name operand s the name of the task segment. The name can consist of from one to elght
alphanumeric characters, the first of which must be alphabetic. If you omit this operand, the IDT
name of the first included module is used as the task name.

The base operand foliowing PROGRAM specifies the load point for the task segment. If you omit
this operand, the Link Editor assigns a load point, which Is at the next 32-byte boundary past the
end of the preceding procedure segment (if used).

Usage

Normally, the TASK command must be followed by an INCLUDE command to define the modules

in the task segment. The INCLUDE command Is not requlired If the task Is linked to a procedure

sagment containing assembler-defined data segments (DSEGs) or common segments {CSEGSs). In

this case, the Link Edltor includes the DSEGs and CSEGSs from the procedure modules In the task

segment. However, the DSEG from the first included module must contaln the antry vector for the
- program, : : - :

The TASK command must foliow all PROCEDURE commands and precede all PHASE and
SEGMENT commands in the control stream.

The TASK command Is semantically Identical to the PHASE 0 command and is listed as a PHASE 0
command in the link map. One and only one of these two commands must appear in every control
stream.

Examples
TASK FORPRG Defines a task segment named FORPRG.
INCL VOL1.0BJ.MODS ‘
TASK Defines the task segment and assigns the
INCL VCL1.0BJ.MODS IDT name of the first included module to the task
segment.

2270522.9701 ' 2.25/2.26

3

Linking Single Task Segments

3.1 INTRODUCTION

In a single task structure, the program consists of a single segment, deflned as a task segment.
You can structure a program as a single task If it does not require more than 64K bytes of memory
and does not share any portions of code with other programs.

Linking single task structures is refatively simple. The basic steps involved are as follows:
1. Build the control stream.
2. Execute the Link Editor,
3. Read the link map and examine It for errors.

These steps are the same for linking all types of structures. However, the control streams and link
maps become more complex as the structure Increases in complexity.

This sectlon covers the baslic linking process using a single task structure as an example. First, it
explains lhe single task structure and provides an example program to be linked. Then, it covers
each step in the linking process, using the same example throughout the section. This section
assumes you are familiar with the basic functions and syntax of the link control commands, as
described in Section 2,

3.2 SINGLE TASK STRUCTURE

A single task structure consists of one or more object modules linked together to form a task seg-
ment, which contains the entire program. The Link Editor produces one linked output module for
the program. The output module must be installed in a program file as a task segment. When the
program is bid, the system loads the task segment into a single, continuous block of memory.

You can link any number of object modules together to form the task segment as long as the total
length of the modules does not exceed 64K bytes. As an example, this sectlon uses three separate
object modules to form a single task. Figure 3-1 through Figure 3-3 contaln assembly listings of
the modules, named MODA, MODB, and MODC (from the IDT directives in each module). The
example assumes that the object modules are on a disk named VOL1 under a user directory
named OBJ.TASK. The file names are MODA, MODB, and MODC.

Module MODA contains the entry vector for the program. The entry vector defines the locations of
the initial workspace, the first instruction to be executed, and the end-action routine for the
program,

2270522.9701 341

Linking Single Task Segments

Module MODA also references external symbols MODB and MODC. Thus, the symbois MODB and
MODC are specified in a REF directive in module MODA. Modules MODB and MODC contain the
definitions for symbols MODB and MODC, respectively. Thus, the symbols MODB and MODC are
specified in DEF directives in the respective modutes. The REF and DEF directlves make the ex-
ternal symbols (both references and definitions) available to the Link Editor for symbaol resolution,

Each of the three modules also contains PSEG, DSEG, and CSEG directives. The PSEG directive
defines a program segment In the object module, the DSEG directive defines a data segment, and
the CSEG directive deflnes a common segment. If these directives are not used, the assembler
defines the entire cbject module as a program segment. The COBOL, FORTRAN, and Pascal com-
pilers also produce object code that defines these segments. These segments are referred to as
assembler-defined segments In this manual to distinguish them from segments produced by the
Link Editor.

During linking, the Link Editor automatically reorganizes the code so that each type of assembler-
deflned segment Iis placed in one continuous block In the linked output. The Link Editor places the
program segments {PSEGs} from all the included medules first, followed by the data segments
(DSEGSs) and then the common segments (CSEGs). The Link Editor produces only one copy of a
given CSEG in the linked output. In this example, all three modules use the same name for the
CSEG; consequently, the Link Editor produces one common area named COM1.

Although only one copy of a given CSEG is produced in the linked output, each moduie using the
CSEG can add elements to it. In the example, module MODA defines one word for CSEG COM1.
However, modules MODB and MODC detine four words for CSEG COM1. Thus, CSEG COM1 will
be four words long.in the linked output. If the modules deflne different inltlal values for the CSEG,
the Link Editor uses the values defined by the last module included In the link.

0001} IDT ‘MODA

o002 REF MODB. MODC

Q003 3#

0004 0000 DSEG

Q0059 Q000 HP B9Ss 32

000& 2

0007 G0OCOD PSEG

0008 0000 0000" DATA WP, START, ENDACT
0002 000467
0904 00127 .

0009 C00&6 04CO START CLR RO

0010 0008 0&AD BL @MODB
Cc00A 0000

0011 000C 0580 INC RO

0012 D0DE 0&AD 8L @eMoDc
¢c010 QOO0

Q013 0012 2FEQ ENDACT XOP @END. 15
014 0000+

0014 “ :

Q0013 0000 CSEG “COM1L‘

0014 CO0OOD Q400 END DATA >0400

0Cc17 END

NO ERRORS., NO WARNINGS

Figure 3-1. MODA Assembly Listing — Single Task Structure

3-2 2270522-9701

0001
oGo2
0003
0004
0005

Q006
Q007
Q008
Q00%

Q010
00i1
0012
00123
0014
0013
0016

0G00
o000
cooz
coo4
Q006
QooB
000A
000C
Q00E
0010
col1z2
0014
001&
Q000
0200
2002
0a00
a0a0

NO ERRORS.

¢040 MODB
c801
Qo2
3860
oooQ"
ceoz
0004+
AOAD
Qoo2"
caoa
olale %)
045B

Q0095
300C

HULT
BASE

EMOD

IDT
DEF
PSEG
Mav
Mov

MPY
Mov
A

MOV

RT
DSEG
DATA
DATA
CBEQ
BgS
END

ND WARNINGS

Linking Single Task Segments

‘MODB ¢
MoDB

RO: R1
R1, @END+2

@MULT: R1
R2: QEND+4
@BASE, R2

R2: GEND+&

=
>3000
‘GOM1L’
a8

Figure 3-2. MODB Assembly Listing — Single Task Structure

0001
0002
0003
0004
Q0035

0Q0&
0007
ooos8
0099

Q010
0011
0012
0013
0014
Q015
oot1é

0009
0000
0Qo02
caoq
0aos
0002
CQ0A
Q007
QO0QE
Q010
o012
0014
0016
Co00
0000
oooe
0000
0000

NO ERRORS,

Cd40 MODC
€801
Qo022+
3840
o00o0o"
cBo2
QoQ4 +
ACAD
ooo2"
cgo2
0004
Q458

Q00A MULT
2000 BASE

END

IDT
DEF
PSEG
MOV
MOV
MPY
MOV
A
MOV

RT
DEEG
DATA
DATA
CSE@
BSS
END

NO WARNINGS

‘MODC *
Maonc

RO: R1
R1, @END+2

@MULT, R1
R2, @END+4
eBASE. R2

R2: REND+&

10
>2000
‘camMt
e

Figure 3-3. MODC Assembly Listing — Single Task Structure

2270522-9701

33

Linking Single Task Segments

3.3 BUILDING THE CONTROL STREAM

The control stream defines the structure of the program and directs the Link Editor in the linking
process. Every control stream must contain the following commands:

. A TASK or PHASE 0 command
. At least one INCLUDE command
. An END command

These are basic commands and are the only commands that you must use in the control stream to
link a single task. The following is the control stream for linking the example program:

TASK PROG1

INCLUDE VOL1.0BJ.TASK.MODA
INCLUDE VOL1.0BJ.TASK.MODB
INCLUDE VOL1.0BJ.TASK.MODC
END

The TASK command defines the beginning of a task segment and assigns a name to-the task,
PROGH1 In this example. (The TASK command is semantically Identical to the PHASE 0 command;
one and only one of these commands must appear In the control stream.) The INCLUDE
commands specify the object modules to be Included in the link. Alternatlvely, you can specify all
three modules In one INCLUDE command by separating: the pathnames of the modules with
commas. The END command terminates the control stream.

The order in which the modules are included in the link is defined by the order in which they are
listed in the INGLUDE commands. The module containing the entry vector for the program must
be the first module included in the task segment. Thus, In this example, MODA must be included
first, but the order of the remaining two modules Is not important. Also, remember that the Link
Editor reorganizes the PSEGs, DSEGs, and CSEGs from each module. The following shows the
placement of assembler-defined segments using the previous control stream:

MODA PSEG
MODB PSEG
MODC PSEG
MODA DSEG
MODB DSEG
MODC DSEG

CSEG COM1 {one copy for all modules)

Since no other commands are in this control stream, the Link Editor assumes some default con-
ditlons. For example, the default for the format of the linked output is standard 990 object code.
When standard or compressed format is used, the Link Editor also includes the symbol tables
from the object modules in the linked output, allowing you to symbolically debug the program. In
this case, you must write the linked output to a data file and then use the SCI Install Task {IT) com-
mand to install the linked output in a program file. If desired, you can omit the symbol tables from
the linked output by placing the NOSYMT command anywhere in the control stream prior to the
END command.

3.4 2270522.9701

Linking Single Task Segments

Once a program is completely debugged, you can write the linked output directly to a program flle,
To do this, use the FORMAT command wlth the IMAGE option as follows:

FORMAT IMAGE,REPLACE

TASK PROG1
INCLUDE VOL1.0BJ.TASK.MODA,VOL1.0BJ.TASK.MODB,VOL1.0BJ. TASK.MODC
END

Using this control stream, the Link Editor resolves the references to MODA, MODB, and MODC
and produces a single linked output module in image format. The linked output must be written to
a program file. Since the REPLACE option is also selected in the FORMAT command, the Link
Editor replaces any task segment named PROG1 currently installed in the specified program flle.

In addition to the basic commands, some of the commands from other functional groups are
useful in linking single tasks. The following paragraphs describe these commands.

3.3.1 Symbol Resolutlon Commands
The symbol resolution commands perform functions that aid in symbol resolution. These com-
mands are LIBRARY, SEARCH, FIND, and NOAUTO.

The LIBRARY command defines a dlrectory or sequential file containing object modules as a
library. In the exampile, the directory VOL1.0BJ.TASK can be defined as a library, When you use a
defined library in.conjunction with the INCLUDE ¢command, you have to specify only the file name
(directory library) or module name {sequentlal library) instead of the entire pathname. You must
enclose the names In-parentheses, as follows: . :

FORMAT IMAGE,REPLACE
LIBRARY VOL1.0BJ.TASK

TASK PROG1
INCLUDE (MODA),(MODB),(MODC)
END

In this examgple, all the modules required by the program are specifled In the INCLUDE command.
The Link Edlitor resolves symbol references among these modules. However, if any unresolved
references remain at the end of the control stream, the Link Editor also automatically searches the
deflned library for modules to satisfy these references. Since MODA in the example references
both MODB and MODC, you do not have to specify MODB or MODGC In the INCLUDE command.
The Link Editor searches the directory VOL1.0BJ and includes MODB and MODC as the result of
the automatic search,

In a directory Itbrary structure, the Link Editor searches the directory for a flle with the same name
as the referenced symbol. For this reason, the file names must match the external deflnitions
{DEF tags). If a module contains more than one external definition, you should assign an alias to
the file for each additlonal definition; use the SCI Add Alias to Pathname (AA) command. This en-
sures access by the Link Edltor to all external definitions.

2270522-9701 3-5

Linking Single Task Segments

Sequential libraries are searched in a different manner. In this case, the Link Editor searches each
module in the llbrary for a DEF tag to match the reference. Only one pass ls made through a se-
quential library to resolve references. Therefore, If one module references a previous module in
the ltbrary, that reference is not resolved unless the referanced module has already been included
in the link.

All automatic searching occurs at the end of the control stream. However, you can force a search
operatlon at a specific point in the control stream by using the SEARCH or FIND command. {The
FIND command is synonymous with SEARCH and is listed as SEARCH in the link map.) For ex-
ample, if MODB references other modules from a different library that need to be included in the
tink before MODC, you can use the following control stream:

FORMAT IMAGE,REPLACE
TASK PROGH

LIBRARY VOL1.0BJ.TASK
INCLUDE (MODA),(MODB)
SEARCH VOL1.0BJ.LIB
INCLUDE (MODC)

END

You can also use the SEARCH command (or muitiple SEARCH commands) to ensure that all re-
quired modules from a sequentlal library are Included In the link.

-Automatic searching still occurs at the end of the control stream unless you use the NOAUTO
command. If you do not need automatic searching, as in this example, use the NOAUTO com-
mand. This conserves time in the execution of the Link Edltor. You can place the NOAUTO com-
mand anywhere.in the control stream prior to the END command.

3.3.2 Speclal Function Commands

The special functlon commands that are useful in linking single tasks are ERROR, SHARE, and
ADJUST.

Normailly, the Link Editor terminates when it encounters an error. The ERROR command allows
the Link Editor to continue processing the control stream when an error occurs. You might want to
use this command the first time you link a program to identify ail the errors at one time. However,
you must correct the errors and relink the program before you can install and execute it,

The ERROR command should appear at the beginning of the control stream so that it is processed
betore any errors occur, With the ERROR command in use, the Link Editor does not process a line
in which an error occurs but continues to the next line. For example, if an error occurs In the
FORMAT command, the Link Editor does not process that command and the linked output
defauits to standard 990 object code. The Link Editor always terminates when an error occurs in an
INCLUDE command. :

3.6 2270522-9701

Linking Single Task Sagments

The SHARE command allows you to specify modules that share the same data area In the linked
output. You can use a shared data area in some cases to conserve memory, Normally, the Link
Editor allocates a separate data area for each DSEG defined in the modules. When you use the
SHARE command, the Link Editor allocates one data area for all the DSEGs from the modules
specified in the SHARE command. The maximum size of this data area Is defined by the DSEG
from the first module Included in the link,

You can use the ADJUST command to adjust the starting location of a module so that it is aligned
on a specified boundary, The boundary is expressed in bytes as a power of two. Adjustment on a

boundary makes address caiculations easier when debugging. However, adjustment also uses
more memory.

The following is an example of a control stream that uses the ERROR, SHARE, and ADJUST
commands:

ERROR

FORMAT IMAGE,REPLACE
LIBRARY VOL1.0BJ.TASK
TASK PROG1
INCLUDE (MODA)
ADJUST 5

INCLUDE (MODB),(MODC)
SHARE MODB,MODC
END

The ADJUST command in this example aligns MODB on the next 32-byte boundary following
MODA. The SHARE command causes MODB and MODC to share the same data area. The amount
of space allocated for this data area |s equal to the slze of the DSEG.defined in MODB. The Link
Editor allocates a separate data area for MODA. '

3.3.3 Output Listing Commands
The output listing commands useful in linking single tasks are MAP and NOMAP.

The MAP command allows you to control the lIsting of certaln symbols In the link map. Normally,
the Link Editor lists all the external definitions (DEF tags) contained In the object modules in-
cluded in the link. However, some of these may not be referenced by the inciuded modules and,

therefore, are of no interest, In this case, you can use the MAP command to specify the listing of
only referenced symbols, as follows:

FORMAT IMAGE,REPLACE
LIBRARY VOL1.0BJ.TASK

MAP REFS

TASK PROG1

INCLUDE. (MODA),(MODB),(MODC)
END

2270522-9701 3.7

Linking Single Task Segmenis

You can also use the MAP command to suppress the listing of symbols that begin with a specified
character string. For example, the following command suppresses the listing of symbols that
begin with CXS:

MAP NO‘CXS’

This is usefu! when you want to list all the external definitions in the object modules you
specifically included but you also want to suppress those from a run-time library.

If you do not need a link map (for example, the program Is completely debugged and the infor-
mation in the link map is not useful), you can use the NCMAP command to suppress generation of
part of the listing file. You can place the NOMAP cemmand anywhere in the control stream prior to
the END command.

3.4 EXECUTING THE LINK EDITOR

The Link Editor is actlvated by the Execute Link Editor (XLE) command to SCI. The following ex-
plains the prompts and appropriate responses for this command,

Prompts

EXECUTE LINK EDITOR
CONTROL ACCESS NAME: pathname@ (*)
LINKED OUTPUT ACCESS NAME: [pathname@] (*)
" LISTING ACCESS NAME: [pathname@] (%)
PRINT WIDTH (CHARS): integer (80)
PAGE LENGTH: Integer (59)

Prompt Delails

CONTROL ACCESS NAME
Enter the pathname of the device or file containing the control stream. The control stream
can be read from a disk file or any sequential device such as a tape unit or card reader, You
can enter the control stream directly from a terminal, but it should not be the same terminal
from which you entered the XLE command.

LINKED OUTPUT ACCESS NAME .
Enter either DUMY, a blank line (null response), or the pathname of the file to which the Link
Editor is to write the linked output. DUMY or a blank line suppresses generation of the linked
output. This allows you to make a trial run to ensure that no arrors oceur.

If you enter a pathname and you used the IMAGE option in the FORMAT command, you must
specify either a program flle, an image file, or a nonexlisting file. If the flle specified does not
exist, the Link Editor creates a program file for the linked output. This program file contains
only enough room to hold the segments and overlays defined In the control stream.

If you enter a pathname and you did not use the IMAGE optlon in the FORMAT command, you
must specify a sequentlal data file (except for COBOL programs) or a nonexisting file, If the
file specified does not exist, the Link Editor creates a sequential flle for the linked output.
Before you can execute the program, you must install the linked output in a program file or
image file.

3.8 2270522-9701

Linking Single Task Segments

LISTING ACCESS NAME
Enter either DUMY, a blank line, or the pathname of the flle or device to which the Link Editor
Is to write the listing file. DUMY or a blank line suppresses generation of the listing file,

PRINT WIDTH (CHARS)
Enter an Integer from 60 through 132, The integer value specifies the maximum number of
‘characters per line that the Link Editor writes to the listing file or device.

PAGE LENGTH
Enter any positive integer. The integer value specifies the maximum number of lines per page
that the Link Editor writes to the listing file or device. The Link Editor adds three lines to the
specified value for header informatlon,

Once you have entered responses to all the prompts, the Link Edltor begins execution in the
background. The amount of time required for it to complete executlon depends on the size and
structure of the program and the system load during executlon, A large program may require
several hours to link. When the Link Editor completes execution, a message Is displayed on the
terminal screen. The message indicates If any errors occurred during i!nking. Reter to Section 9
for an explanation of error messages.

The maximum amount of memory available to the Link Editor during execution Is 64K bytes. The
Link Editor code uses 16K bytes; the rest Is used as tabie area for the modules and external sym-
bols in the program being linked. To determine the amount of memory required fora partlcular pro-
gram, use the following guidellnes

allow 16K bytes for the Link Editor code

pius 16 bytes for each external reference
plus 40 bytes for each included module
plus 10% of the sum of the above

If the total of this exceeds 84K bytes, you can use partial links to reduce the size required. (Refer
to Section 8.)

Exampie

EXECUTE LINK EDITOR
CONTROL ACCESS NAME: VOL1.CNTRL.TASK
LINKED OUTPUT ACCESS NAME: VOL1.PROGRAM
LISTING ACCESS NAME: VOL1.MAP.TASK
PRINT WIDTH (CHARS): 80
PAGE LENGTH: 59

This example reads the control stream from a disk file called VOL1.CNTRL.TASK. It writes the
linked output to a program file called VOL1.PROGRAM and the listing file to a disk flle called
VOL1.MAP.TASK. A maximum of 80 characters per line and 59 lines per page is written to the
listing flle.

22705229701 39

Linking Single Task Segments

3.5 READING THE LINK MAP

In addition to the linked output, the Link Editor produces a listing file, which summarizes the link-
ing process and the structure produced. In a single task structure, the listing file conslsts of three
pages. Figure 3-4 shows the listing file produced for the example program. The first line of each
page contains a header consisting of the word LINKER followed by the release number, the Julian
date of the release, the date and time the listing file was created, and the page number. (The
headers for the example listings show only the date, time, and page number.)

Page 1 has an additional header entitled COMMAND LiST. This page contains a capy of the con-
trol stream used.

Page 2 also has an additional header entitled LINK MAP. This page lists the the parameters
entered for the XLE command, the number of output records produced (If image format is used),
the format selected for the linked output, and the libraries defined in the control stream. The
librarles are listed under three columns as follows:

NO ORGANIZATION PATHNAME
where:

NO indicates the order In which the {lbrary was defined. Other parts of the link map refer to
this number.

‘ ORGANIZATION indicates the type of library structure used (RANDOM or SEQUENTIAL).
RANDOM refers to a directory structure. ' '

PATHNAME specifies the pathname of that library.

Page 3 begins the actual link map, which shows the structure of the linked output. The first line of
the link map is as follows:

PHASE 0, PROGH1 ORIGIN = 0000 LENGTH = 0076 {TASKID = 1)

This line defines the first segment or phase in the link. In this example, it is a task segment, which
is listed as PHASE 0. (PHASE 0 and TASK commands are semantically identlcal and are always
listed as PHASE 0 in the link map.) PROG1 s the name assigned to the task. The ORIGIN entry
shows the starting location of the task segment, relative to the beginning of the program. Since
this example consists of a single task, the starting location of the task segment is 0000. The
LENGTH entry specifies the actual number of bytes of memory required to hold the segment.
When Image format is used, the last entry on this line shows the installed ID assigned to the seg-
ment or phase. When standard or compressed format is used, the phrase ENTRY = xxxx (where
xxxx is an address) may appear at the end of the line. Read-only memory {(ROM) loaders use this
address to determine the entry point at which execution of the program starts when loading is
complete.

The modules linked to form the segment are listed after the segment definition. These modules
are listed under eight columns as follows:

MODULE NO ORIGIN LENGTH TYPE DATE TIME CREATOR

3.10 2270522-9701

Linking Single Task Segments

where:

MODULE lists the name of each included module. The data area for each module is listed as
$DATA and follows. immedIlately after the module in which It Is defined.

NO indicates the order in which the moduie was included In the link, Other parts of the link
map refer to this number.

ORIGIN shows the starting location of each module, relative to the beginning of the program.
LENGTH shows the length In bytes of each module.
TYPE shows the command that caused the module to be Included in the link. This is elther
INCLUDE, SEARCH, or LIBRARY if the module was included as the result of an automatic
search. If a number follows the command name, It indicates the library in which the module
was found. You can map this number back to the library definitions on page 2 of the listing
flle.
DATE shows the date the module was originally created.
TIME shows the time the module was c¢reated.
CREATOR specities the utility that generated the module. This Is either the assembler
(SDSMAC), a compiler (for example, DXPSCL for the Pascal compiler), or the Link Editor
(LINKER) if the module was generated by a partlal link, '
If the object modules being linked contain CSEGs, the following appears after the module llstings:
COMMON NO ORIGIN LENGTH
where:
COMMON lists the name of each CSEG.
NO indicates the number of the last module In which the CSEG is included.
ORIGIN shows the beginning location of the CSEG, relative to the beginning of the program,
LENGTH shows the length in bytes of the CSEG.
Following the CSEG listings, the link map iists and describes all the external definitions from the
moduies included in the link. These are listed in columns under the header DEFINITIONS, as
follows:
NAME VALUE NO NAME VALUE NO NAME VALUE NO
where;
NAME lists each symbol externally defined (DEF tag symbol) in the modules. An asterisk {*)

preceding the name indicates a symbol that Is externally defined but not referenced within
the program.

2270522-9701 3-11

Linking Single Task Segments

VALUE specifies the address within the link assoclated with the symbol. An asterisk (*)
following a value Indicates that the value Is absolute (not relocatable).

NO indicates the number of the module In which the symbol is deflned. You can map this
number back to the module listings.

If any unresolved references remain at the end of the link, the link map lists the unresolved
references. These are listed In columns under the header UNRESOLVED REFERENCES, as
follows:

NAME COUNT NO NAME COUNT NO NAME COUNT NO
where:

NAME lists each symbol that could not be resoived.

COUNT specifles the number of times the symbo_l Is referenced.

NO indicates the number of the module in which the symbol Is referenced, You can map thls
number back to the module listings.

Unresolved references cause the followlng warning message to appear at the end of th-e link map:
n WARNINGS |
where:
n Is the number of unresolved }eferences.
It errors occurred, the following appears at the end of the link map:
n ERRORS
where:
n Is the number of errors.

Error messages are also distributed throughout the listing flle. Refer to Section 9 for an expla-
natlon of error messages.

The last line of the tink map contains a completion message, as follows:

*4tt LINKING COMPLETED

3.12 2270522-9701

COMMAND LIST

FORMAT IMAGE ; REPLACE
LIBRARY VOL1.0BdJ. TASK
TASK PROG1
INCLUDE (MODA), (MODB} » (MODC)
END

LINK HAFP

CONTROL FILE = VOL1.CNTRL.TASK

LINKED QUTPUT FILE

LIST FILE = vOL1.MAP.TASK

voLl.

PROGRAM

NUMBER OF QUTPUT RECORDS = 1

QUTPUT FORMAT = IMAGE

LIBRARIES

NO CRGANIZATION

1 RANDOM

PHASE 0, PROG1 DRIGIN =

MODULE
MODA
$DATA
MODE
$DATA

MoDC
$DATA

COMMON

COi1

NAME

MODEB

*HEH

NQ ORIGIN
1 0000
1 0046
2 0014
2 0046
3 Q0ZE
3 Q0&A
NO ORIGIN
3 D0GE
VALUE NO
ooté 2

PATHNANE

VOL1,0BJ. TASK

Linking Single Task Segments

04/15/82 15:58:00 PAGE 1
04/15/82 15:38:Q0 FAGE Z

04/15/82 13:58100 FAGE 2

0000 LENGTH = 0076 (TASK ID = 1}

LENGTH TYPE DATE TIME CREATOR
0016 INCLUDE, 1 04/15/82 15:45: 44 SDSMAC
0020
0018 INCLUDE, 1 04/15/82 13:2446:50 SDSHAC
0004
Qo018 INCLUDE, 1 04/15/82 15150142 SDSHAC
0004

LENGTH
co0s

DEFINITI!IONS
NAME VALUE NO NAME VALUE NO NAHE VALUE NO
MoDC QO2E 3

LINKING COMPLETED

Figure 3-4. Example Listing Fite — Single Task Structure

22705229701

3-13/3-14

4

Linking Procedure Segments

4.1 INTRODUCTION

The use of procedure segments allows you to share code among several different programs or
among several coples of the same program. This saves physical memory when programs that
share code are in memory at the same time.

Linking a program with procedure segments involves the same baslc steps as linking a single task
segment (building the control stream, executing the Link Editor, and reading the link map, as
described in Sectlon 3). This section explains the procedureftask structure and provides an ex-
ample program to be tinked. It also explains how to build the control stream and read the link map
for the example, Execution of the Link Editor (use of the XLE command} Is the same regardless of
the structure used.

4.2 PROCEDUREITASK STRUCTURE

In this type of structure, a program conslsts of two or three segments: one or two procedure
segments and a task segment. The procedure segment{s) must contain the code to be shared.
Usually, this Is only executable code andfor constant data. Procedure segments must precede the
task segment. This ensures the placement of shared code in the same locations for ail tasks.

As previously mentioned, procedure segments have two maln uses:
. To share code among several copies of the same program
* To share code among several different programs

The Link Editor allows a maximum of two procedure segments to be linked to a task segment,
Usually, one procedure segment Is sufficlent for elther of the above uses. However, two procedure
segments may be useful if a program requires both uses. In this case, the first procedure segment
should be the one to be shared among several different programs. Shared procedure segments
must be reentrant.

The task segment must contain the entry vector for the program. The task sagment may also con-
tain variable data and code not used by other programs. Each program must contain one and only
one task segment,

You must perform a separate link operation (using a different control stream) for each program
that uses a shared procedure segment. In each link operation, the Link Editor produces one linked
output module for each segment defined. However, you need to retain only one copy of the linked
output module for a shared procedure segment.

22705229701 4.1

Linking Procedure Segments

When linking programs in this type of structure, you can use any number of object modules to
form each segment, as long as the total length of all the modules does not exceed 64K bytes. As
an example, this section uses five object modules to form a program wlth one procedure segment
and a task segment. {Since linking two procedure segments is very stmilar to linking one pro-
cedure segment, only one procedure is used In the example))

Figure 4-1 through Figure 4-56 contaln assembly listings of the example modules (MODA, MODB,
MODC, MODX, and MODY). The examples assume that each module is contalned In a separate flle
of the same name, under a directory named VOL1.0BJ.PROC.

Since module MODA contains the entry vector for the program, it must be the first module in-
cluded in the task segment. Modules MODB and MODC are also used to form the task segment,
Modules MODX and MODY are used to form the procedure segment.

Each of the modules (except MODA} contalns PSEG, DSEG, and GSEG directives. As explained in
Section 3, the Link Editor places all the PSEGs from the Included modules first, followed by the
DSEGs and then the CSEGs. Therefore, even though MODX and MODY are used to form the pro-
cedure segment, the DSEGs and CSEGs from these modules are actually placed in the task seg-
ment. The placement of assembler-defined segments Is discussed further in subsequent
paragraphs.

0001 IDT 'MODA’
0002 REF WP.START, ENDACT
0003 0000 ' PSEG ,
" QD04 Q000 Q0G0 * DATA WP.START, ENDACT
0002 0000
Q004 Q000
0095 END
NO ERRORS. NO WARNINGS

Figure 4-1. MODA Assembly Listing — Procedure/Task Structure

4-2 2270522-9701

0001
- Q002
0003
0004
0005
0006
Q007
0008

0069
Q010
001t

o012

0013
Q014

Q015
Q014
0017
o018
0019

0020

0000
00090
0020
0000
Q0Co
Qoo2
0004
0006
QQos
Q00A
Q00C
Q00E
0210
odi12
<014
Co16
0o1e
001A
001c¢
Q000
0000
0002
0000
0000
Qo002
G004

NO ERRORS.

HP
Q400 END

DB02 START
0000+
0440
0000
0203
Q001
0&A0
0000
c820
0000+
Q002+
06A0
Q000

2FEQC ENOACT

Qoz20"

BUF1
BUF2

0000 DATA
0000
0000

NO WARNINGS

IDT
DEF
REF
DSEG
BSS
DATA
PSECG
Move

BL
LI
BL

Mov

BL
Xxop

CSEC
BgEs
BsSs
CBEC
DATA

END

Linking Procedure Segments

‘MODB “
WP. START: ENDACT
MODC, MODX, MODY

32
>0400

R2, @DATA
eMoDC
R3: 1
@MODX

@BUF 1, @BUF2

eMoDY
@END, 13

‘COM1
2

2
‘camMz
0,00

Flgure 4-2, MODB Assembly Listing — Procedure/Task Structure

0001
opo2
0003
0004

0023
0006
Qco7
o008
0009

0010
oo11

0912

0000
00090
0002
¢ooq
0004
0008
000A
000C
0Q00
00Q0
Q000
Q0032
coo=
0004

NO ERRORS:,

IDT
DEF
PSEQ
COAOQ MODC MOV
0000+
ACAQ A
0000"
cBeg2 MOV
0002+
0458 RT
DSEG
QAQ0 CBDA DATA
CSEG
0000 DATA DATA
Q000
0000
END
NO WARNINGS

'MaDC '/
MODC

@DATA. R2
@CBDA.R2

R2, @DATA+2

>Qa00
‘comz -
0,0,0

Figure 4-3. MODC Assembly Listing — Procedure/Task Structure

2270522.9701

Linking Procadure Segments

4-4

0001
0002
0003
Q004

0005

00086
0007

Qo008

Q009
0010
0011
0012
0013
o014
Q015
NO ER

00049
0000
cooz
0004
0004&
0008
000A
Qo0g
Q0Q0E
Q010
0o12
00090
0000
G000
0009
0002

RORS,

0202 MODX

Q0G0+

0283

0001

1302

o202

0002+

C4A0 NEXT

00o00o"

0458

1111 CONST
BUF1
BUF2

IDT
DEF
PSEG
LI

CI

JEG
LI

MOV

RT
DSEG
DATA
C8EG
BSS
BSS
END

NO WARNINGS

‘MODX *
MODX

R2, BUF1
R3. 1

NEXT
R2., BUF2

@CONST, #R2

>1111
‘COM1L’
2

2

Figure 4-4. MODX Assembly Listing — Procedure/Task Structure

0001
0002
- 0003
0004

Q005

0006
Q007
0003
0009
0010
0011
Q012
NO ERR

00090
0009

r

c120 mMODY

0002 Q002+

0004
0004
Qoo
0002
2000
09000
Q000
0002

ORS,

Al20
o0o000*"
Q45B

2222 CONST

BUF1
BUF2

IDT
DEF
PSECG
MOV

A

RT
DSEQ
DATA
CSEG
BSS
BSsS
END

NO WARNINGS

‘MODY
MODY

@BUF2, R4

@CONST, R4

>2222
‘COM1”
2

2

Figure 4-5. MODY Assembly Listing — Procedure/Task Structure

2270522-9701

Linking Procedure Sagments

4.3 BUILDING THE CONTROL STREAM

The control stream for this type of structure contalins the same basic commands as that for a
single task segment, with the addition of the PROCEDURE ¢command. The PROCEDURE com-
mand defines the beginning of a procedure segment and assigns a name to the segment. As
stated earlier, the procedure segmeni(s) must precede the task segment, You can also use any of
the other commands that can be used in single task structures. The following Is the control
stream for linking the example program:

LIBRARY VOL1.0BJ.PROC
PROCEDURE PROC1
INCLUDE (MODX),{MODY)

TASK TSK1
INCLUDE (MODA),(MODB),(MODC)
END

The PSEGs from modules MODX and MODY form the procedure segment. The DSEGSs from these
modules are placed in the task segment, followlng the PSEGs from modules MODA, MODB, and
MODC. The CSEGs follow the last DSEG with one exception: CSEGs defined In a module with an
IDT of $BLOCK are placed in the procedure segment if that module is included In the procedure
segment. The following shows the arrangement of the assembler-defined segments in the linked
output, uslng this contro! stream:

Procedure segment (PROC1)

MODX PSEG
MODY PSEG .

Task segment (TSK1):

MODA PSEG

MODB PSEG

MODC PSEG

MODX DSEG

MODY DSEG

MODB DSEG

MODC DSEG
CSEG COM1 (used by MODX, MODY, and MODB)
CSEG COM2 (used by MODB and MODQ)

This arrangement works fine when multipie copies of the same task are to share the procedure
segment. However, this arrangement can cause problems when different tasks are to share this
procedure segment. Notice that the DSEGs and CSEGs from the modules included in the pro-
cedure segment follow the PSEGs from the modules included in the task segment. If the PSEGs
from different tasks vary in size, the DSEGs and CSEGs from the procedure segment will be
placed in different locations in each task. When this happens, the references in the procedure seg-

ment vary from lask to task, and the procedure segment can no longer be shared among these dif-
ferent tasks.

2270522-9701 4.5

Linking Procedure Segments

You can prevent this problem by using the ALLOCATE command. When the Link Editor en-
counters the ALLOCATE command, it allocates space for the DSEGs and CSEGs already included
in the link, as If no more object modules were to be included. This helps ensure that the DSEGs
and CSEGs from the procedure segment are placed in the same locations for every task that uses
the procedure segment.

The ALLOCATE command must appear in the task segment (after the TASK command). Since the
entry vector for the program must appear flrst in the task segment, the ALLOCATE command must
also be placed after the INCLUDE command for thls module (MODA in this example). In order for
this to work, you must ensure that the portion of the task segment included before the ALLOCATE
command (referred to as the preallocated portion of the task segment) Is the same size for every
task that shares the procedure segment. Other modules that form the task segment can be In-
cluded after the ALLOCATE command; this portion of the task segment Is referred to as the
postallocated portion. However, you must ensure that the procedure segment doas not referance
any symbols in the postallocated modules. '

Using the ALLOCATE command in this way, you can vary the size and the content of the task
segment from task to task without adversely affecting the execution of the shared procedure
segment, The following control stream shows the placement of the ALLOCATE command for the
example program:

LIBRARY VOL1.0BJ.PROC
PROCEDURE PROCH1
INGLUDE (MODX),{MODY)

TASK - TSK1
INCLUDE (MODA)
ALLOCATE

INCLUDE (MODB),(MODC)
END

This control stream causes the Link Editor to arrange the assembler-defined segments as follows:
Procedure segment (PROC1):

MODX PSEG
MODY PSEG

Task segment (TSK1):

MODA PSEG
MODX DSEG
MODY ODSEG
CSEG COM1
MODB PSEG
MODB DSEG
MODC PSEG
MODC DSEG
CSEG COM2

a-6 2270522-9701

Linking Procedure Segments

Notice that the Link Editor no longer groups the PSEGs and DSEGs in one block -for the
postallocated modules. However, any new CSEGs from these modules are still placed after the
last DSEG. Also note thatl space for CSEG COM1 is allocated before modules MODB and MODC
are included. Therefore, MODB (which uses CSEG COM1} cannot add any elements to this CSEG.

As stated earlier, you must perform a separate link operation for each task that uses a shared pro-
cedure segment, but you need to keep only one copy of the linked output for this segment. After
linking the procedure with the first task, you should use the DUMMY command to suppress
generation of the linked output for the procedure segment. This conserves time in the linking
process for each subsequent link. Use of the DUMMY command also prevents problems that may
occur when the shared procedure segment is in use while it is being linked to a new task.

The following control stream shows the use of the DUMMY command in linking the shared pro-
cedure segment with a new task;

LIBRARY VOL1.0BJ.PROC
PROCEDURE PROC1

DUMMY

INCLUDE (MODX),(MODY)

TASK TSK2

INCLUDE (MODA2)

ALLOCATE

INCLUDE {MODB2),(MODC2),(MODD2)
END

Using this control stream, the Link Editor produces a linked output module for the task segment
but does not produce one for the procedure segment. If you are using image format and are linking
lwo procedure segments to a task, you can dummy the second procedure segment only if you
dummy the first. '

As in single task links, you can use the FORMAT command with the IMAGE option to install the
linked output directly into a program flle. If you do not use this option, you must install the
-gsegments in a program file before you can execute the program. Procedure segments must be In-
stalled either in the same program file as the task segment or in a special system file called
.S$SHARED.

Once you have buiit the control stream, you can execute the Link Editor using the Execute Link
Editor (XLE) command as described in Section 3. The Link Editor produces ¢ne linked output
module for each segment defined in the control stream. When image format is not used, the Link
Editor writes all the output modules to a singie object flle. The lInked output modules for the pro-
cedure and task segments must be installed in a program file separately, using the Install Pro-
cedure Segment (IP) and the Install Task Segment {IT) commands, respectively. Refer to the DNOS
System Command Interpreter (SCI) Reference Manual for an explanation of these commands.

In order to install the segments correctly, you must install them in the order in which they are
deflned in the control stream. You must also specify a logical unit number (LUNQ) rather than a
pathname for the object file prompt in the IP and IT commands. Using a LUNQ prevents the object
file from being rewound before the next output module is installed.

22705229701 4.7

Linking Procedure Segments

4.4 READING THE LINK MAP

Figure 4-6 shows the ilsting file produced for the example program. This file is similar to the listing
file shown In Section 3 for single task segments. Page 1 contains a copy of the control stream.
Page 2 lists the pathnames entered for the XLE command, the format selected, and the defined
libraries. Page 3 begins the actual link map.

In this case, the link map consists of several pages. The procedure segment is defined first, The
first line of this definition shows the segment type (PROCEDURE 1), the name assigned to the pro-
cedure (PROC1), and the origin and length of the procedure segment. If you use the DUMMY com-
mand, the word DUMMY also appears on this line.

The modules used to form the procedure segment are listed next. Notice that the DSEGs for these
modules are listed in the procedure segment {under $DATA following each module), but the
origins show locations in the task segment.

The task segment definltion starts on a new page. (This dees not aoccur If you use the NOPAGE
command in the control stream.) When you use the ALLOCATE command (as In this example), the
Link Editor spllts the task segment definitlon into two paris: the preallocated portion and the
postallocated portion. The preallocated portion is defined first. The postallocated portion starts a
new page and is identlfied by the phrase (POST ALLOCATE) on the first line,

When linking a procedure segment to several different tasks, ¢check the link maps of each task to
ensure that the prealiocated portion of the task segment and the DSEGs and CSEGs from the pro-
_cedure modules are at the same origins in all tasks. '

04/13/82 16132136 FAGE i
COMMAND LIST

LIBRARY VoL §.0BJd. PROC
PROCEDURE PROC1
INCLUDE (MODX). (MODY)

TASK T3KA

INCLUDE (HODA)
ALLOCATE

INCLUDE (MODE) » {MORDC)
END

Figure 4.6. Example Listing Flle — Procedure/Task Structure (Sheet 1 o1 5)

4-8 2270522.9701

Linking Procedure Segments

04/15/82 16:132:3% . PAGE 2
LINK MAP

CONTROL FILE = VOL1.CNTRL.PROC
LINKED OUTPUT FILE = VOL1.PROCOB.
LIST FILE = VOL1.MAP.PROC

OUTPUT FORMAT = ASCII

LIBRARIES

NO ORGANIZATION PATHNAME

1 RANDOM VOL1.0BJ. PROC

Figure 4-6. Example Listhg File — ProcedureTask Structure (Sheet 2 of 5)

9]

04/15/82 16:132:36 PAGE

PROCEDURE 1. PROCI1 ORIGIN = 0000 LENGTH = 0O1E

MODULE . NO ORIGIN - LENGTH - TYPE - - DATE TIME CREATOR.
MODX 1 Q000 0014 INCLUDE, 1 04/15/82 16226255 SD3MAC
sDATA 1 0024 000z '
MoDy by 0014 QO0A INCLUDE. 1 04/15/82 -~ 16:29:04 SDsMAC
sDATA 2 0028 Q002

DEFINITIONS
NAME VALUE NO NAME VALUE NO NAME VALUE NO NAME VALUE NO

MODX Qo0 | MoDY o0] I B

Figure 4-6. Example Listing File — Procedure/Task Structure (Sheet 3 of 5)

2270522-9701 4.9

Linking Procedure Segments

04/15/82 1463132136 FPAGE 4
PHASE 0. TSK1 ORIGIN = 0020 LENGTH = 00564
MODULE NO ORIGIN LENOTH TYPE DATE TIME CREATCR
MODA 3 0020 0006 INCLUDE, 1 04/15/82 16209125 SD3MAC

COMMON NO ORIGIN LENGTH

COM1L 4 00ZA 0004

Figure 4-6. Example Listing Flle — Procedure/Task Structure (Sheet 4 of 5)

04/15/82 146332136 PAGE S
PHASE ©. TSKi QRIGIN = Q02E LENGTH = 0054 (POST ALLOCATE)
.)
MODULE NO ORIGIN LENGTH TYPE DATE "TIME CREATOR
MODB) Q02E Q01E INCLUDE, 04/15/82 16820302 SDSMAC
$DATA 4 004c 0022 '
MoDcC S 0Q4E 000E INCLUDE, & 04/15/82 16222133 SOSHMAC
$DATA 3 007C 0002

COMMON NO ORIGIN LENGTH

comM2 S 007E 0006

DEFINITIONSES
NAME VALUE NO = NAME VALUE NO NAME VALUE NAO NAME VALUE NO

ENDACT 0048 4 MoDC QD&E 3 START Q0ZE 4 Wp 004C 4

##¥ LINKING COMPLETED

Figure 4-6. Example Listing Filte — Procedure/Task Structure (Sheet 5 of 5)

4-10 2270522-9701

5 .

Linking Program Segments

5.1 INTRODUCTION

DNOS segment management provides a great deal of flexibility In the use and handling of program
segments. Although a number of segments can be In memory, a maximum of three segments can
be addressed at one time. The task can Issue supervisor calis (SVCs) to dynamically change the
set of segments currently addressable. Thus, using program segments, you can increase the
amount of code that can fit into the program’s logical address space by exchanging segments as
required.

This sectlon explains the structure of tasks using program segments and provides an example
program to be linked. It also explains how to build the controf stream and read the link map for this
type of structure.

5.2 TASK/PROGRAM SEGMENT STRUCTURE

In this type of structure, a program can consist of a number of different segments, including one -
procedure segment (optional), one task segment, and a number of program segments. The system

- maps each of these segments Into one of three map poslitions (1, 2, or 3) of the program’s logical
address space. You must define the segment types In the correct order in the control stream so
that they can be mapped Into the right map positions. A procedure segment must precede the task
segment, and program segments must follow the task segment. All linked program segments
must be in the same map position.

If you use a procedure segment, the procedure segment occuples map position 1, the task seg-
ment occuples map position 2, and the program segments all occupy map position 3. You cannot
use two procedure segments when also using program segments. {Refer to Sectlon 4 for a
description of procedure segments.)

If you do not use a procedure segment, the task segment occuples map position 1, and the pro-
gram segments all occupy map position 2. In this case, you cannot link any program segments in
map positlon 3. However, the task can Issue SVCs to add program segments in map positlon 3
during execution.

As In all types of structures, the task segment must contaln the entry vector for the program. The
task segment may also contain the SVCs to add, deléte, or exchange program segments as re-
quired. Refer to the DNQOS Supervisor Call (SVC) Reterence Manual for an explanation of these
SVCs. The task segment itself cannot be exchanged with other segments.

Pragram segments can ¢contain both executable code and/or data. The program segments can also

vary in slize. However, the total size of the procedure segment (if used), the task segment, and the
largest program segment cannot exceed 64K bytes.

22705229701 5.1

Linking Program Segments

You can link as many program segments as needed to reduce the total size of the mapped
segments. (When you use image format, the number of segments defined Is limited to the number
of segments that will fit in the program file.} Remember that the task can address only one linked
program segment at a time. Therefore, these program segments cannot reference each other
directiy.

The procedure segment and task segment are loaded Into memory when the task Is bid. The pro-
gram segments are not loaded until they are mapped In by an SVC. The call block for the SVC re-
quires the installed ID of the segment that Is to be loaded or mapped. You can obtain this ID in one
of two ways. One way Is to assign an ID yourself either In the link contro! stream {with the ID
operand of the PHASE command) or when you Install the segments. This way, you can assfgn the
same ID used in the call block. In this case, you must ensure that the ID asslgned Is unique with
respect to all other segments or overlays In the same program flle.

The other way to obtain a program segment iD is to reference the segment by name in the task or
procedure segment, as follows:

REF segment name
DATA segment name

The segment name must be the same name assligned in the SEGMENT command that defines the
program segment. The segment name must also be unique with respect to all externaliy defined
(DEF tag) symbols in the program and all names assigned to other segments or phases in the con-
trol stream. In this case, the Link Editor résolves the reference by assigning an available ID rather
than an address to segment name. This ID Is stored as the value of the DATA dlrective operand,
which can be used In the call biock for the SVC. -

When linking programs in this type of structure, you can use any number of modules to form each
segment. As an example, this section uses four object modules to form the task segment and two
program segments. Figure 5-1 through Figure 5-4 contaln assembly listings of the example
modules (MODA, MODB, MODC, and MODD). The examples assume that each module is con-
tained In a separate file of the same name as the module, under a directory named VOL1.0OBJ.SEG.

Module MODA contalns the entry vector for the program and other code that will be placed in the
task segment. Modules MODB and MODC are used to form one of the program segments (SEG1).
Moduie MODD is used to form the other program segment {SEG2).

Each of the modules contains PSEG, DSEG, and CSEG directives. For the task segment, the Link
Editor reorganizes the assembler-defined segments In the same manner as it does for single task
structures. (See Section 3.) The Link Editor does not reorganize the PSEGs and DSEGs within the
program segments. CSEGs are stlll placed after the last DSEG in each segment. If the modules in-
cluded in a program segment reference a CSEG not used by the task segment, this CSEG is placed
In the program segment. However, if another program segment aiso references this CSEG, the
CSEG is promoted (moved) to the task segment. Subsequent paragraphs further discuss the place-
ment of assembler-defined segments.

5.2 2270522-9701

0001
0002
Q003
0004
Q005

0006

0097
0008
0009
0010
0011
0012
0013
0014
0013
0016
0017
0018

0019
0020

0000
0000
0020
ooz2
c024
0026
0028
0024
002¢
002E
0030
o032
co34
0036
0038
0009
0000
0002
c004
0006
00083
CO0A
0o0oc
000E
0010
0012
0014
cole
0018
0014
001C
Q01E
0020
co22
0024
0009
0000

NO ERROCRS,

Hp

4000 CH2SEQ
QOFF
8002
0000
0000
0000
Q000
0000
0000
0000
0000
0000
04

SECID

EnND

0000"
0006 "
Q022"
0200
0004
€800
002g"
2FEO
ooz20"
06A0
0000
0200
Q008
2FEQ
ooz2o"
06A0
0000
2FEO
ooag"

START

ENDACT

0000 FLAG

DT
REF
DSEG
pSS
DATA

DATA

BYTE
PEEG
DATA
LI
MoV
XopP
8L
LI
XoP
BL
XopP
CEBEG

DATA
END

NO WARNINGS

Linking Program Segmenis

‘MaDA”
MODB. MODD

az
>4000, >00FF, >8002, ¢

0.0,0,0,0,0,0.,0

204

WP, START., ENDACT

RO, 10

RO, @SEGID
@CHGSEG, 15
@MoDB

RO. 11 . _
@CHQBEG: 15
@MoDD
@END, 13

‘COM1 7
o]

Figure 5-1. MODA Assembly Listing — Task/Program Segment Structure

2270522-9701

Linking Program Segments

0001
ooQ2
0003
0004
0003

0006

0007

coo8
Q009

Q01¢

0011
o012
0013
0214
0015
Q014
Qot7
00isg
ooLe
Qoz0
o021

" ND ERRORS.

0000
Q000
coo2
0004
0006
0008
000A
000C
COOE
0010
o012
0014
0014
o018
Q01A
0D1cC
0Q1E
0Q0D
0000
2002
0000
0000
0000
00090
0000
0000

0T
DEF
REF
PSEG

¢B80B MODB Mov

0000

cB20 MoV

oooz"

0000+

AB20 A

0000+

0000+

06AQ BL

0000

cez0 Hov

0000+

0000+

G2EQ MOV

ogoo"

0458 RT
DSEG

0000 SAVELI1 DATA

2999 VALUE DATA
CSEG

FLAG Bgs
CSEG
BUF B8S

CSEG

0000 LUND DATA
END

NO WARNINGS

‘MODB ’
MODB

MODC

R11, @5AVE1L1L

@VALUE, ¢BUF
@FLAG. @BUF

eMoDc

@BUF, @LUND

@SAVELl,R11

>9999
COML

‘coMa’

‘CaMa’

Flgure 5-2. MODB Assembly Listing — TaskiProgram Segment Structure

0001
o002
0002
0004

Q005

Q006

0007
ooose
[{elel)
0010
0011
ooli2
0013
0014
00153
001e

Q000
Q000
o002
2004
Q006
QQ08
000A
oQoc
QQ0E
0010
0000
Q000
Q000
0000
Q000
0000
00090
0000

NO ERRCGRS:,

IDT
DEF
PSEC
AB20 ™ODC A
a000"
00Q0+
03EQ INCT
0000+
AB20 A
Q000+
Q000+
0458 RT
DSEC
22B8 vaAL2 DATA
CSEC
FLAG 38s
CSEG
BUF BSS
CSEG
LuUND BSS
END

MO WARMINGS

MODC ¢
MODC

eVAaLZ, @BUF

eFLAG

@LUNO: @BUF

a8ae
*COM1L
2
‘comz2-
2
‘cOM3“
=

Figure 5-3. MODC Assembly Listing — TaskiProgram Segment Structure

54

2270522-9701

Linking Program Sagmeants

0001 IDT ‘MODD’

oQo2 DEF MODD

0003 0000 PSEG

0004 0000 AB20 MODD A @VAL. @FLAG
aoc2 o000
Q004 0000+

0005 000A 0540 INY @BUF
¢d08 Qo000

0036 000A 045B RT

0007 0000 DBEG

0008 0000 10E1 VAL DATA 4321

0009 0000 CSEG ‘COMi~’

Q010 0000 FLAG Bss 2

0011 0000 CSEG ‘COM2‘

Q0t2 0000 BUF BsSs 2

0013 ENOD

NO ERRORS, NO WARNINGS

Figure 5-4. MODD Assembly Listing — Task/Program Segment Structure

5.3 BUILDING THE CONTROL STREAM

In this type of structure, the control stream contains the same basic commands as that fora single
task, with the addition of the SEGMENT command. The SEGMENT command defines the begin-
ning of a program segment. All program segments must follow the task segment. The following is
the control stream for linking the example program: - ' : : -

LIBRARY VOL1.0BJ.SEG
TASK TSK2

INCLUDE (MODA)
SEGMENT 2,SEGT
INCLUDE (MODB)(MODC)
SEGMENT 2,SEG2
INCLUDE (MODD)

END

The SEGMENT command specifies the map position the program segment wil} ocecupy (map posl-
tion 2 in this example) and assigns a name to the segment. You can use as many SEGMENT com-
mands in the control stream as necessary, but all of them must be in the same map position,
Optionally, the SEGMENT command allows you to assign a load point and segment |D to the seg-
ment. The following Is an example:

SEGMENT 2,SEG1,PROGRAM 0800,ID 1

The segment ID is especially usefui with image format. This allows you to assign the same ID used
in the call block for the SVC that loads a particular segment.

2270522-9701 5-5

Linking Program Segments

The following shows the arrangement of the assembler-defined segments in the linked output,
using the above control stream:

Task segment (TSK2):

MODA PSEG
MODA DSEG
CSEG COM1 (used by all modules)
CSEG COM2 (used by modules MODB, MODC, and MODD)

Program segment (SEG1):

MODB PSEG
MODB DSEG
MODC PSEG
MODC DSEG
CSEG COMS (used only by MODB and MODC)

Program segment (SEGZ):

MODD PSEG
MODD DSEG

The task segment contains the PSEG, DSEG, and CSEG COM1 defined In MODA. The task seg-
ment also contains CSEG COM2, even though it is not referenced by MODA. Since both SEG1 and
SEG2 reference CSEG COM2, the Link Editor promotes (moves) this CSEG to the task segment so
that both program segments have access to |t. :

Program segment SEG1 contains the PSEGs and DSEGs from MODB and MODC. Notice that the
PSEGs and DSEGs are not grouped together but are placed in the order in which the modules are
Included in the link. SEG1 dlso contains CSEG COM3, which is placed after the last DSEG in this
program segment, CSEG COM3 remains in the program segment since it is not referenced by the
task segment or the other program segment.

In addition to the commands discussed In this section, you can use any of the other commands
discussed in Section 3 for single tasks. If you use a procedure segment, follow the instructions
given in Section 4. Program segments can also contain overlays as described in Saction 6.

Using the example control stream, you can execute the Link Editor with the Execute Link Editor
(XLE) command as described in Section 3. The Link Editor produces one linked output module for
each segment defined in the control stream. If you select the IMAGE option in the FORMAT com-
mand, the Link Editor installs the segments directly into a program file, Otherwise, the Link Editor
writes the linked output moduies to a single object file. You must install the linked output
modules Into a program file before you can execute the program. You can install the procedure,
task, and program segments using the Install Procedure (IP), install Task (IT}, and Install Program
Segment (IPS) commands, respectively. Refer to the DNOS System Command Interpreter (SCI)
Reference Manual for an explanation of these commands.

To install the segments correctly, you must install them in the same order as they are defined in
the control stream. You must also specify a logical unit number (LUNQO]) rather than a pathname for
the object file prompt in the IP, IT, and IPS commands. Using a LUNO prevents the object file from
being rewound before the next output moduie Is installed.

56 2270522-9701

Linking Program Segments

5.4 READING THE LINK MAP

- Figure 5-5 shows the listing flie produced for the example program. This file is similar to the listing
file shown in Section 3 for single tasks. Page 1 contains a copy of the control stream. Page 2 lists
the pathnames entered for the XLE command, the format selected, and the defined libraries. Page
3 begins the actual link map.

Since no procedure segment is used In this example, the task segment is deflned first. The flrst
line of this definition shows the segment type (PHASE 0), the name assigned to the task segment
{TSK2), and the origin and length of the task segment, The module used to form the task segment
is listed next.

The definition for each program segment starts on a new page unless you use the NOPAGE com-
mand in the control stream. The definltions appear in the order in which the segments are defined
in the control stream. The first line of each defInition shows the segment type, the name assigned,
and the origin and length. Notice that the origins are the same for all the program segments, but
the lengths vary.

04/15/82 17107133 FAGE |

COMMAND LIST

LIBRARY VOL1.0BJ.SEG

TASK T3K2

INCLUDE - (MNDA)

SEGMENT 2, 3EG1

INCLUDE {MODB), (MODC)

SEGMENT 2, 5EG2

INCLUDE (MoDn)
END

Figure 5-5. Example Listing File — Task/Program Segment Structure (Sheet 1 of 5)

04/715/82 17:07:33 PAGE z
LINK HAP

CONTROL FILE = VOL1.CHTRL.SEG
LINKED QUTPUT FILE = YOL1.SEGAOBJ
LIST FILE = VOL1.MHAP.SEG

OUTPUT FORMAT = ASCII

LIBRARIES

NI ORGANIZATION PATHNAME

1 RANDCM VaL L, oBJ, SEG

1

Figure 5-5. Example Listing File — Task/Program Segment Structure {(Sheet 2 of 5)

2270522-9701 5.7

Linking Program Segments

04/15/82 17:07:33 FAGE 3
PHASE 0. TSK2 DRIGIN = 0000 LENGTH = 0080
MODULE NO ORIGIN LENGTH TYPE DATE TIME CREATOR
MODA 1 0000 0026 INCLUDE, 1 04/15/22 16146205 SDSMAC

SDATA 1 Q0zZ6 0039

COMMON NO ORIGIN LENGTH

CoMI 4 Q0460 G002
CcOoM2 4 0062 Q002

Figure 5-65. Example Listing File — Task/Program Segment Structure (Sheet 3 of 5)

04/15/782 17:07:133 PAGE 4

" SEGMENT SEG1 ORIGIN = 0080 LENGTH = 003A

MODULE NG ORIGIN LENGTH TYPE] DATE TIME CREATOR
MODB 2 Q030 0020 INCLUDE, } 04/13/82 16150339 SDSMAC
SDATA 2 00AD 0004

MoDC] 00A4 0012 IRNCLUDE, { 04/15/82 14:54:15 SDSMAL
$DATA 3 ooBs 0002

COMMON NO ORIGIN LENGTH

COM3 3 QO0B3 o002

DEFINITIONS
NAHE VALUE NO NAME VALUE N NAME VALUE NO NAME VALUE NO

MODR 0050 2 MODC ocAq4 3

Figure 5:5. Example Listing File — Task/Program Segment Structure (Sheet 4 of 5)

5-8 2270522-9701

SEGMENT SEGZ2

MODULE

MODD
$DATA

NAME

MODD

NG

Linking Program Segments

04/15/82 17:07:33 FAGE S5

ORIGIN = 0080 LENGTH = 003A

ORIGIN LENGTH TYPE DATE TIME CREATOR
0080 000G INCLUDE, 1 0d/15/82 17:06:51 SDSMAC
¢oac 0002

DEFINITIONS

VALUE NO NAME VALUE NO NAME VALUE NO NAME VALUE NO

0080 4

#aa% LINKING COMPLETED .

- Flgure 5-5. Example Listing File — Task/Program Segment Structure (Sheet 5 of 5)

2270522-9701

§-9/5-10

6

Linking Overlays

6.1 INTRODUCTION

The use of overlays allows you to Increase the amount of code that can fit into the program’s
logical address space. An overlay consists of one portion (phase) of a task or program segment,
which remains in memory only as long as It is required. When another overlay is needed, it is
loaded into the same physical area and replaces an overlay currently in memory, You can define
overlays at any number of levels to make maximum use of memory.

This section explains the structure of programs using overlays and provides an example program
to be linked. It also explains how to build the control stream and read the Iink map for this type of
structure,

6.2 OVERLAY STRUCTURE

You can use overlay structures in conjunction with other types of structures; however, only the

- segment(s) occupying the last map position in the link can have overlays. Thus, procedure
segments (if used) cannot contain overlays, and If the task segment contains overiays, you cannot
link any program segments. You can use overlays in any number of program segments as long as
the task segment does not also contain overlays.

An overlay structure consists of one root phase defined at level 0 and a number of other phases
defined at levels 1 and higher. The root phase |s that portion of the task or program segment that
must remain In memory while the program Is executing; It cannot be replaced by another phase.
The root phase must also contain code to load the overlays in that segment.

The overlays are defined as phases at level 1 and higher. You can define any number of phases at
each of these levels, limited only by the number of phases that can fit in one program file. The
phases can vary in size, and phases defined at the same level can overlay each other.

A series of phases, starting with the root phase and including a phase at each successively higher
level, comprises an overlay path. Overlay paths are established by the order in which the phases
are defined in the control stream. When establishing overlay paths, you must consider the rela-
tionship between the phases, as follows:

» Phases that interact with each other (access or transfer control to} must be in the same
path. If a module is required Iin more than one path, you can either inciude it in one
phase of each path or include it in a phase common to all paths that require It

e Phases defined at the same level must be Independent of each other; they cannot
reference each other direcily or indirectly.

22705229701 6-1

Linking Overlays

When planning overlays, you also need to consider the frequency of use of each phase. Since
loading ah overlay requires time, code that is frequently used should be placed In a procedure seg-
ment, the root phase, or a separate program segment rather than in an overlay.

When linking overlay structures, you can use any number of object modules to form each phase.
As an example, this sectlon uses ten object modules to form a task segment with overlays. An ex-
ample of a program segment with overlays using the same baslic structure Is also provided. (To
simplify the example, the assembly listings for the object moduies have been omitted in this sec-
tion.) The example assumes that each object module is in a separate file of the same name as the
module, under a directory named VOL1.08J.0VLY.

Figure 6-1 shows the structure of the axample task segment. The segment consists of nine phases
at four levels. Each phase Is formed by one or two object modules. (Nine of the object modules are
unique to one phase, and one object:module is used in two phases.)

The root phase (ROOT) al level 0 is formed by module MODA. Level 1 has two phases, OVLY1A
(formed by module MODB) and OVLY1B (formed by module MODF). Level 2 has four phases,
OVLY2A (formed by module MODC), OVLY2B (formed by modules MODD and MODE), OVLY2C
(formed by module MODG), and OVLY2D (formed by modules MODJ and MODE), Level 3 has two
phases, OVLY3A (formed by module MODH} and OVLY3B (formed by module MODI). This struc-
ture has flve overlay paths, as follows: -

. Path 1 contains phases ROOT, OVLY1A, and OVLY2A -

* * Path 2 contalns phases ROOT, OVLY1A, and OVLY2B

¢ Path 3 contains phases ROOT, OVLY1B, OVLY2C, and OVLY3A.

* Path 4 contains phases ROOT, OVLY1B, OVLY2C, and OVLY3B

. Path 5 contains phases ROOT, OVLY18, and OVLY2D

A phase that Is in the path of two or more phases at the same higher level is called a parent node,
Thus, the example structure has four parent nodes:

. Phase ROOT, which Is the parent node of OVLY1A and OVLY1B

* Phase OVLY1A, which is the parent node of OVLY2A and OVLY2B

* Phase OVLY1B, which Is the parent node of OVLY2C and OVLY2D

* Phase OVLY2C, which Is the parent node of OVLY3A and OVLY3B
The Link Editor produces one output module for each phase defined. The root phase is Installed as
the root portion of the task (or program) segment. The root phase Is loaded into memory when the
task is bid (or, in the case of program segments, when the segment Is loaded). Phases at level 1
and higher are installed as overlays. Overlays are not loaded into memory until required. The

amount of memory allocated for a segment with overlays is the sum of the root phase and the
fongest overlay path.

-2 2270522.9701

Linking Overlays

LEVEL O
ROOT {ROOT PHASE)
{MODA)
LEVEL 1
OVLY1A OVLYIB
{MoDB) {MODF)
OVLY2A LEVEL 2
{MODC)
oviyas ovLyYzcC ovLYZ2D .
MODD (MODG) EMODJ)
MODE MODE)
\ 4
OVLY3A
(MODH) LEVEL 3
oviy3ie
{MOD1}
2282942
Figure 6-1. Example Overlay Structure

2270522971

6-3

Llnklng'Oveﬂa ¥s

The linked output must contain code to load the various overlays as they are required. Overlays
can be either user loaded by Load Overlay supervisor calls (SVCs) or automatically loaded by the
Overlay Manager. The following paragraphs discuss user-loaded overlays and the Overlay
Manager. Subsequent paragraphs also discuss the promotion of modules and the placement of
assembler-defined segments in an overlay structure.

6.2.1 User-Loaded Overiays

With user-toaded overlays, the root phase of the segment containing overlays must issue Load
Overlay SVCs to load the overlays in that segment, The Load Overlay SVC is described in detail in
the DNOS Supervisor Call (SVC) Reference Manual. -

When Issulng these SVCs, ensure that the overlays are loaded In the proper sequence. Before a
specific phase can be referenced, it must already be in memory. In addition, all preceding phases
Inits path must be In memory; that is, all phases between the referenced phase and the root phase
must be in memory.

The call block for the Load Overlay SVC requires the Installed ID of the overlay that Is to be loaded.
You can obtain this ID in one of iwo ways. One way is to assign an ID yourself either in the link
control stream (with the ID operand of the PHASE command) or when you install the overlays. This
way, you can assign the same 1D used In the call block. In this case, you must ensure that the ID
assigned is unique with respect to all other overlays in the same program file.

The other way to obtaln an overlay ID is to reference the overlay by name in the root phase, as
follows:

REF overlay name
DATA overlay name

The overfay name must be the same name assigned in the PHASE command that defines the
overlay. The overlay name musl also be unique with respect to all externally defined (DEF tag)
symbols in the program and all names assigned to segments or other phases in the control
stream. In this case, the Link Editor resolves the reference by assigning an available ID to overfay
name rather than an address. This |D is stored as the value of the DATA directive operand, which
can be used In the call block for the Load Overiay SVC.

6.2,2 Ovarlay Manager .

DNOS Includes an Overlay Manager, which can be linked with the program to perform automatic
. overlay loading during program execution. The Overlay Manager supports the ioading of overlays

only in the task segment, not in a program segment,

You can use the Overlay Manager with assembly language, COBOL, or FORTRAN programs.
However, you cannot use it with Pascal programs since Pascal uses different calling conventions
than the Overlay Manager. Also, do not use the Overlay Manager with user-loaded overlays In the
same program, since unpredictable results can occur.

6.4 2270522-9701

Linking Overlays

The Overlay Manager loads an overlay when the program references a module or subroutine within
that overlay. For the Overlay Manager to work properly, the overlays must be referenced In the
proper sequence. A reference from one phase to another phase that is further from the root phase
is a downward reference, A downward reference causes the Overlay Manager to load the required
phase If It is not currently in memory. A downward reference can go down only one level from the
cuirent level. Therefore, a phase must be referenced by Its parent node to be loaded. For example,

referring to Flgure 6-1, OVLY1B can reference OVLY2C or OVLY2D, but It cannot reference
OVLY3A or OVLY3B.

A reference from one phase to another phase that is closer to the root phase Is an upward
reference. An upward reference does not cause an overlay to be loaded. If the downward
references were made correctly, phases required for upward references will already be loaded.

The Overlay Manager also requires the use of specific calling conventions when referencing a
module or subroutine within another phase. The reference must be made through use of the
Branch and Load Workspace Pointer (BLWP) Instruction. The operand of this Instruction must
specHy one of the following:

. The symbolic name of the module or subroutine, as follows:
BLWP @name

* A register that contains the address of the module or subroutine, as follows:

L
LI " R9,name
BLWP *RS

In elther case, name is the symbol assoclated with a transfer vector (workspace pointer and pro-
gram counter) to the module or subroutine. The symbol name must also be specified as an ex-
ternal symbol {through the use of REF and DEF dlrectives). When resolving this symbol, the Link
Editor changes the address of name to point to an entry in a table used by the Overlay Manager.

NOTE

You cannot use Indexed addressing or direct register addressing in
the BLWP instruction.

The Overlay Manager requires the use of two tables, which are built by the Link Editor. The tables
are the overiay entry vector (OEV) table and the overlay phase directory (OPD) table. The following
briefly describes the structure of these tables. Normally, you do not need this Information to link

the Overlay Manager with your program, However, it may be useful when you are debugging your
program.

2270522-9701 6-5

Linking Overlays

The OEV table Is a read-only table that contains an entry for each downward reference made in the
overlay structure. (The pointer to the correct entry for this table is obtained from the name symboi
in the BLWP instruction.) Each entry in the OEV table consists of flve words, as follows:

Word Description
0 Workspace pointer (WP) for the Overlay Manager
1 Address of the new program counter (PC) value for the Branch and Llnk (BL)

instruction in the next word (equal to current address plus 2)

2 A BL instruction to transfer control to the Overlay Manager (equivalent to
BL *R1)

3 Address of the transfer vector (WP and PC) in the referenced oﬁerlay

4 Address of the entry In the OPD table that describes the overlay to be

loaded for this entry

The OPD tabie consists of two parts: a read-only part and a read/write part. The read-only part con-
tains a three-word entry for each phase deflned In the control stream. (The pointer for each of
these entrles Is obtalned from the last word In an OEV table antry.) The format for an OFD entry Is
as follows:

WOrd_ : ‘_ Descflptlon
0 Overlay ID
1 Address of the OPD entry for the first overiay on the same level as this
overlay
2 Overlay load address

The read/write part of the OPD table consists of a bit map, which contains flags that Indicate
whether an overiay Is currently tn memory (1 equals yes, 0 equals no). The bit map is indexed by
the overlay ID. The bit map always consists of 256 bits, numbered from 0 through 255. Each bit cor-
responds to an overlay ID. Since overlay IDs are numbered from 1 through 256, the bit corre-
sponding to a particular overlay ID is one digit less than the ID. For example, bit 24 of the bit map
corresponds to overiay ID 25, Normally, all of the blts in the bit map are not used in one program.
The link map shows the starting locatlon for the bit map.

6-6 2270522-9701

Linking Overlays

6.2.3 Promotion of Modules

Promotlon is the elevation of a module to a phase closer to the root phase In the overlay structure.
The Link Editor promotes oniy those modules that are brought into the link as the result of a
search operation (either by automatic searching or by use of the SEARCH or FIND commands).

The promotlon of a module depends on which phases reference that module, When required, the
Link Editor promotes the module to the highest-level phase common to the paths of all phases
that reference the module.

For example, assume phases OVLY2A and OVLY2B in Flgure 6-1 both reference moduie MODX
and assume MODX is brought into the link as the result of a search operatlon. The Link Editor pro-
motes MODX to phase OVLY1A (the parent node) so that both OVLY2A and OVLY2B can access it.

As another example, assume phases OVLY2B and OVLY3A both reference module MODY. In this
case, the Link Editor promotes MODY to phase ROOT, since phase ROOT is the oniy phase in the
same path as both OVLY28 and OVLY3A.

Remember that the promotion of modules does not apply to modules specifically included In the
link (with INCLUDE commands). In this case, you must ensure that amodule is included in a phase
that s common to the paths of all phases referencing that module. Alternatlvely, you can include a
module In several phases in different paths, as in the example, However, you must also ensure
that a particular module is not Included In more than cne phase In the same path; otherwise, mul-
tiple definitions appear In the linked output. This can easlly happen when.a particular module Is
both specifically Included In one phase and brought into the link by a search operation for other
phases. ' ‘ o o

6.2.4 Placement of Assembler-Defined Segments

For the root phase in the task segment, the Link Editor reorganizes the assembler-defined
segments In the same manner as It does for single task structures. (See Section 3.) The Link Editor
does not reorganize the PSEGs and DSEGs of included modules within overlays. CSEGs are stll|
placed after the last DSEG in each phase.

When necessary, the Link Editor promotes CSEGs In the same manner as it does for modules; that

is, 1t promotes the CSEG to the highest-level phase common to the paths of all phases that
reference the CSEG.

22705229701 6-7

Linking Overiays

6.3 BUILDING THE CONTROL STREAM

In an overlay structure, the control stream must contain commands to define the segments and
PHASE commands to define the overlays within a segment. The overlays must be defined In a
speciflc order and at the correct lsvel to properly establish the overlay paths. This ensures that
each phase Is assigned the correct load polnt, The following [s the control stream to link the ex-
ample program:

LIBRARY VOL1.0OBJ.OVLY

TASK ROOT -
INCLUDE (MODA)

PHASE 1,0VLY1A
INCLUDE (MODB)
PHASE 2,0VLY2A
INCLUDE (MODC)
PHASE 2,0VLY28
INCLUDE (MODD),(MODE)
PHASE 1,0VLY1B
INCLUDE (MODF)

PHASE 2,0VLY2C
INCLUDE (MODG)
PHASE 3,0VLY3A
INCLUDE (MODH)
PHASE 3,0VLY3B
INCLUDE ~ (MODI)
PHASE 2,0VLY2D
INCLUDE (MODJ){MODE)
END

The TASK command defines the beginning of the task segment. The INCLUDE command imme-
diately following the TASK command specifies the object module that will form the root portlon of
the task segment. Optionally, you can use a PHASE 0 command instead of the TASK command,
(TASK and PHASE 0 commands are semantically identical.)

Each PHASE command defines the beglnning of a new phase at the level specifled. The INCLUDE
commands following the PHASE commands specify the modules that will form each phase.

The overlay paths are established by defining one phase at each successively higher level untll all
the phases forming a complete path are defined. Each phase is defined only once in the control
stream. Thus, once you have established one path, you can start establishing the next path by
defining a new phase at the next higher level from a parent node of the previously established
path. Referring to Figure 6-1, notice that the deflnition of phases is from top-to-bottom first and
then left-to-right.

In the control stream, path 1 is established first by deflning ROOT at evel 0, OVLY1A at leve! 1, and
OVLY2A at level 2. Then, path 2 is established simply by defining OVLY28 at level 2, since the
other phases in this path have already been deflned. However, path 3 requires several new phases
to be deflned. It starts with the definition of OVLY1B at level 1 and continues with OVLY2C at level
2 and QVLY3A at level 3. Then, path 4 is established by defining OVLY3B at level 3. Path 5 Is
established by defining OVLY2D at level 2, .

6-8 2270522.9701

Linking Overlays

When you use image format, you can also use the optional ID operand in each PHASE command to
assign IDs to the phases. This Is especially useful when you are loading your own overlays.

In addition to the commands already discussed, you can use any of the other commands dls-
cussed In Sectlon 3 for single task structures. If you use the ADJUST command in an overlay
structure, adjust all phases at the same levei and with the same parent node in the same manner.
For example, If you want to adjust OVLY2A so that It is aligned on a particular boundary, adjust
OVLY2B so that it is also aligned on that boundary. Otherwise, phases that overiay each other
might be assigned different toad potnts, causing unpredictable results,

To adjust the phases properly, place the ADJUST commands so that they appear after the
INCLUDE command(s) for a parent node but before the first PHASE command for the level you
want adjusted. When you place an ADJUST command In this posltion, you do not have to adjust
each phase separately; the Link Editor automatically aligns all subsequent phases at the same
level and with the same parent node at the speclfied boundary. The following control stream
shows the placement of ADJUST commands to properly align all the overlays at levels 2 and 3 on
32-byte boundaries:

LIBRARY VOL1.0B4.0OVLY

TASK ROOT
"INCLUDE (MODA)
PHASE 1,0VLY1A
INCLUDE (MODB)
ADJUST 5
PHASE 2,0VLY2A
INCLUDE (MODC)
PHASE 2,0VLY2B
INCLUDE (MODD){MODE)
PHASE 1,0VLY1B
INCLUDE (MODF)
ADJUST 5
PHASE 2,0VLY2C
INCLUDE (MODG)
ADJUST 5
PHASE 3,0VLY3A
INCLUDE (MODH)
PHASE 3,0VLY3B
INGLUDE (MODI)
PHASE 2,0VLY2D
INGLUDE (MODJ),(MODE)
END

By adding some commands to the control stream, you can link the Overlay Manager with the pro-
gram. You can also use the same basic overlay structure In a program segment rather than the task
segmenl. Subsequent paragraphs discuss linking the Overlay Manager and linking program
segments with overlays.

Once you have built the control stream, you can execute the Link Editor with the Execute Link
Editor (XLE) command, as described in Section 3. The Link Editor produces one linked output
module for each phase defined in the control stream. If you select the IMAGE option in the
FORMAT command, the Link Editor installs the phases directly into a program file. Otherwise, the

22705229701 6-9

Linking Overlays

Link Editor writes the linked output modules to a singie object file. You must Instail the linked out-
put modules Into a program file before you can execute the program. You can install the root
phase of the task segment using the Instail Task (IT} command and the overlays using Install
Overlay (10) commands. Refer to the DNOS System Command Interpreter (SCI) Reference Manual
for an explanation of these commands.

To install the phases correctly, you must Install them In the same order as they are defined in the
control stream. You must also specify a loglcal unit number {LUNO) rather than a pathname for the
object file prompt in the IT and 10 commands. Using a LUNO prevents the object file from belng
rewound before the next output module is Installed.

6.3.1 Linking the Overlay Manager

You can link the Overlay Manager with the program by using the LOAD command in the control
stream. The Overlay Manager is contalned on the system subroutine library .S$SYSLIB. You must
define this directory as a library In the control stream in order for the Link Editor to access it. You
must also specify the IMAGE option with the FORMAT command.

The LOAD command causes the Link Edltor to do the following:
* Include the Overlay Manager in the link

* Build the tables required by the Overlay Manager and resolve certaln external symbois
differently

The LOAD command must appear before the first-overlay is defined. If you use a procedure seg-
ment, the LOAD command can optionally be placed in the procedure segment; otherwise, it must
be placed in the root phase of the task segment. The followlng control stream links the Overlay
Manager with the example program:

LIBRARY .S$SYSLIB
LIBRARY VOL1.0BJ.OVLY
FORMAT IMAGE,REPLACE

TASK ROOT
INCLUDE (MODA)

LOAD

PHASE 1,0VLY1A
INCLUDE (MODB)
PHASE 2,0VLY2A
INCLUDE (MODC)
PHASE ° 2,0VLY2B
INCLUDE (MODD),(MODE)
PHASE 1,0VLY1B
INCLUDE (MODF)

PHASE 2,0VLY2C
INCLUDE ~ (MODG)
PHASE 3,0VLY3A
INCLUDE (MODH)
PHASE 3,0VLY3B
INCLUDE (MODI)

PHASE - 2,0VLY2D
INCLUDE (MODJ),(MODE)
END

6-10 " 2270522-9701

Linking Overlays

6.3.2 Linking Program Segmaents with Overlays

An overlay structure in a program segment is similar to that in the task segment. In this case, the
root phase of the overlay structure Is defined by the SEGMENT command and the associated
INCLUDE command(s). {You cannot use the PHASE 0 command In a program segment.) The
PHASE commands (at level 1 and higher) following the SEGMENT command define the overlays In
that segment,

You can use overlay structures in several different program segments within the same program.
The total number of segments and overlays defined in the control stream Is limited to the number
that will flt in the program file.

The root phase for each segment must contaln SVCs to load the overlays in that segment. (You
cannot use the Overlay Manager in program segments.)

The following control stream shows the example overlay structure placed in a program segment.
(Refer to Sectlon 5 for information on program segments.) The control stream also defines a task
segment and another program segment,

LIBRARY VOL1.0BJ.OVLY
TASK MAIN
INCLUDE (MODTSK)
SEGMENT 2,SEGT
INCLUDE (MODS)
SEGMENT 2,SEG2
INCLUDE (MODA)
PHASE 1,0VLY1A
INCLUDE (MODB)
PHASE ~ 2,0VLY2A
INCLUDE (MODC)
PHASE 2,0VLY2B
INCLUDE (MODD},(MODE)
PHASE 1,0VLY1B
INCLUDE (MODF)
PHASE 2,0VLY2C
INCLUDE (MODG)
PHASE 3,0VLY3A
INCLUDE (MODH)
PHASE 3,0VLY3B
INCLUDE (MODI)
PHASE 2,0VLY2D
INCLUDE (MODJ),(MODE)
END

2270522-9701 6-11

Linking Overlays

6.4 READING THE LINK MAP

Flgure 6-2 shows the listing file produced for the example program. The information shown is
stmllar to that for single tasks; however, a separate definition Is glven for each segment and
overlay deflned in the control stream. Each definition starts on a new page unless the NOPAGE
command is used in the control stream, The definitions appear In the order In which the segments
and overlays are defined in the control stream.

The control stream used for this example contains the LOAD command to show the placement of
code assoclated with the Overiay Manager. The LOAD command causes L$$OVM and L$$OBM to
appear In the link map. L§$OVM is the Overlay Manager moduie. It is listed as a module at the
point where the LOAD command was placed In the control stream. L§$OBM Is the bit map for the
Overlay Manager; it Is listed as a deflnitlon (DEF tag symbol) but not as a module. The value listed
for L§$OBM shows the starting locatlon for the bit map, which always appears at the end of the
root phase for the task segment. (If a procedure segment and the ALLOCATE command are used,
the bit map appears at the end of the preallocated portion of the root phase.) The tables built by

the Link Edltor for the Overlay Manager are also placed in the root phase, but they are not listed in
the link map. :

. 04/16/82 09122114 FAGE 1
COMMAND LIST -

LIBRARY . S$SYELIB
LIBRARY VOL1,0Bd, QVLY
FORMAT IHMAGE . REFPLACE

TASK ROOT

INCLUDE {MODA)

LOAD

PHASE 1.0VLY1A
INCLUDE (HODB)

PHASE 2,0VLYZA
[NCLUDE (MODC)
PHASE 2,0VLY2B
INCLUDE (MOBD) » (MODE)
PHASE 1.0VLY1R
INCLUDE (MODF)

FHASE Z2,0VLY2C
INCLUDE (MODG)

FPHASE 3, 0VLY3A
INCLUDE (MODH)
PHASE 3. OVLY3R
INCLLUIDE (MODI)

PHASE 2,0VLYZD
INCLUDE (MODJ}, (HODE)
END

Figure 6-2. Example Listing File — Overlay Structure {Sheet 1 of 11)

6:12 2270522-9701

Linking Overlays

Q4716732 09122114 FAGE 2
LINK MAF

CONTROL FILE = VﬁLl.CNTRL.UVLY
LINKED OUTPUT FILE = VOL1.PROGRAM
LIST FILE = VOL1.MAP.QOVLY

NUMBER OF QUTPUT RECORDS = 11
OUTPUT FORMAT = IMAGE

LIBRARIES

NO ORGANIZATION PATHNAME

1 RANDOM -S$5YSLIB
= RANDOM VoLL,.0BJ.OVLY

Figure 6-2. Example Listing Fite — Overlay Structure (Sheet 2 of 11)

04/16/82 091221146 FAGE 3
PHASE O, ROOT ORIGIN = 0000 LENGTH = 026C (TASK ID = 2)
MODLULE WO CRIGIN LENGTH TYPE DATE TIHE CREATOR
MODA 1 0000 0013 INCLUDE. 2 04/16/82 09:111:03 SO5MAL
$DATA 1 QOBZ 0020
L&V z oo18a Q0%A INCLUDE» 1 0&/26781 12:143: 24 SDSHAC
SDATA 2 0obz 002D

DEFINITIONS
NAME VALUE N1 NAME VALUE NO NAME VALUE NO MAME VALIIE NO

L$$s0BM Q100 2 #L$$OVM 0018 2

Figure 6-2. Example Listing File — Overlay Structure (Sheet 3 of 11)

2270522-9701 6-13

Linking Overleys

Qq/146/82 09:22:146 FAGE 4

PHASE 1, OVLY1A ORIGIN = O1C&6 LENGTH = 0033 (OVERLAY ID = 1}

MODULE NO ORIOIN LENGTH TYPE DATE TIME CREATOR
MoDB 3 olcsé Qo018 INCLUDE ., 2 04/16/82 09:13:05 SDSMAC
$DATA 3 OiDE Q020

DEFINITIONS
NAME VALUE NO NAME VALUE NO NAME VALUE NO NAME VALUE NO

MODB o1Cé 3
Figure 6-2. Example Listing File — Overlay Structure (Sheet 4 of 11)
04/16/82 09122116 PAGE 5

PHASE 2. OVLYZ2A ORIGIN = OIFE LENGTH = 0034 (QVERLAY ID = 2)

MODULE NO ORIGIN LENGTH TYPE DATE TIME CREATOR

MODC 4 OlFE on1s6 INCLUDE, 2 od/16/22 9107 S0EMAC
$DATA 4 0214 0020

DEFINITIORNSE
NAME VALUE NO NAME VALUE NO NAME VALUE NO NAME VALUE’ WO

MoDc OIFE 4

Figure 6-2. Example Listing File — Overlay Structure (Sheet5 of 11)

6-14 2270522-9701

Linking Overlays

04/146/82 09:22: 14 FPAGE &

PHASE 2, 0OVLYZB NDRIGIN = OLFE LENGTH = 006C (OVERLAY ID = 3}

MODULE NG ORIGIN LENGTH TYFPE DATE TIME .CREATUR
MODD =] OLFE o016 INCLUDE, 2 04/16/82 09817305 SDSMALC
$DATA S 0214 0020

MODE & 0234 0016 INCLUDE, 2 Qa/146/82 09:20:01 SDSMAC
$DATA 6 0244 0020

DEFINITIONS
NAME VALUE NO NAME VALUE NO NAME VALUE NO NAME VALUE NO

MODD QIFE 95 MODE 0234 &

Figure 6-2. Example Listing File — Overlay Structure (Sheet 6 of 11)

O4/i6/82 OM122:16 " PAGE 7

PHASE 1, OVLYLB ORIGIN = 0ICé LENGTH = 0038 (OVERLAY ID = 4)

MODULE NO ORIGIN LENGTH TYPE DATE TIME CREATOR

MODF 7 01Cs 00138 INCLUDE, 2 04/16/32 0v214:33 SDSMALC
£DATA 7 G1DE 0020

DEFINITIONS
NAME VALUE NO NAME VALUE NO NAME VALUE NO NAME VALUE NO

MODF o1Ccs& 7

Figure 6-2. Example Listing File — Overlay Structure (Sheet 7 of 11)

2270522-9701 6-15

Linking Overlays

Q4/16/82 Q9122114

PHASE 2, OvLYZ2C ORIGIN = O01FE LENGTH = 0038 (OVERLAY ID = 5)

MODULE NO ORIGIN LENGTH TYPE DATE TIME
MODG 8 O1FE ooia INCLUDE.2 047167432 Q9 15: 43
$DATA e 0214 0020

DEFINITIORNS
NAME VALUE NO MAME VALUE NO NAME VALLUE NO NAME

MODG QIFE &

Figure 6-:2. Example Listing File — Overlay Structure (Sheet 8 of 11)

04/16/82 0912216

PHASE 3, QOVLY3A . DRISGIN = 0236 LENGTH = 0034 (OVERLAY ID = &)

MODLULE NCY ORIGIN LENGTH TYFE DATE TIME
MODH ¥ 0226 ouls INCLUDE., 2 04/14&/82 Q20342
$DATA 4 0Z4C Q020

DEFINITIONS
NAME VALUE NO NAME VALUE NO NAMHE VALLE NO NAME

MODH oz36 9

Figure 6-2, Example Listing File — Overlay Structure (Sheet 9 of 11)

6-16

PAGE g

CREATOR

SD3MALC

VALUE NO

FPAGE ¥

CREATOR

SDSHAC

VALUE WO

2270522-9701

Linking Overiays

04/146/82 09:122: 14 FAGE 10

FPHASE 3, OVLY3B ORIGIN = 0236 LENGTH = 0034 (OVERLAY ID = 7)

MODUL.E NO ORIGIN LENGTH TYPE DATE TIME CREATOR
MODI 10 0236 0014 INCLUDE., 2 04/16/82 Q9121122 SDSMAC
sDATA 10 024C 0020

DEFINITIONS
NAME VALUE NO NAME VALUE NOD NAME VALUE NO NAME VALLIE NO

MOD1I 0234 10

Figure 6-2. Example Listing File — Overlay Structure (Sheet 10 of 11)

04/16/782 09122:14 PAGE 1i

PHASE 2, OVLY2D ORIGIN = O1FE LENGTH = 004C (QVERLAY ID = 3}

MODULE NQ ORIGIN LENGTH TYPE DATE TIME CREATOR

MODJ 11 O1FE 0D14 INCLUDE. 2 04/16/82 07217159 SNSHAC
$DATA 11 0214 0020
MODE 12 - 0234 0014 INCLUDE, 2 Q4/16/82 G2120:01 SDSHAC
$DATA 12 02440 0020

DEFINITIOGRNS
NAME VALUE NO NAME VALUE NO NAME VALUE NQ NAME VALLUE NQ

MODE 0224 12 MooJ OtFE 11

#xx#t LINKING COMPLETED

Figure 6:2. Example Listing File — Overlay Structure (Sheot 11 of 11)

2270522-9701 6-17/6-18

7

Linking Absolute Memory Partitions

7.1 INTRODUCTION

The Link Edltor provides commands that allow you to structure programs with absolute memory
partitions. These commands position assembler-deflned segments on prescribed absolute boun-
daries so that the program can eventually be loaded Into a combination of read-only memory
(ROM) and random-access memory (RAM).

Programs structured in this manner are Intended for executlon on development systems or stand-
alone systems only; they cannot be executed under the control of the operating system.

This section explains the structure of programs that use absolute memory partitions and provides
an example program to be linked. It also explains how to build the control stream and read the Iink
map for this type of structure,

7.2 ABSOLUTE MEMORY PARTITION STRUCTURE-

in this type of structure, you must include all the modules within a single task segment; you can--
not define a procedure segment, a program segment, or overlays In the ¢ontrol stream. Also, you
cannot specify Image format since the cutput of this type of structure cannot be executed under
the controi of the operating system.

The object modules that form the program must contaln PSEG, DSEG, and (optionally) CSEG
directlves to distinguish read-only code from read/write data. The PSEG directive defines program
segments, which generally contain instructions and nonvarlable data (read-only code). The DSEG
directive defines data segments, which generally contain variable data (read/write code). The
CSEG directive deflnes common segments, which contain varlable data that can be shared by
more than one module. (The Pascal, COBOL, and FCRTRAN compilers automatically deflne these
segment iypes.)

The Link Editor collects the PSEGs, DSEGSs, and CSEGs from the modules so that each segment
type can be placed in a separate area in the output. Using link control commands, you can specify
the starting address for each area. Thus, the program areas (read-only code) are assigned absolute
addresses corresponding to ROM localions, and the data and common areas (read/write code) are
assigned absolute addresses corresponding to RAM locations. The actual placement of these
areas depends on the commands used in the control stream. This is discussed in detail in the
paragraph on building the ¢onirol stream, '

2270522-9701 71

Linking Absolute Memory Partitions

As an example, this section uses four object modules to form a program with absolute memory
partitions. Figure 7-1 through Figure 7-4 contain assembly listings of the example modules
{MODA, MODB, MODC, and MODD). The exampie assumes that each module is contained in a
separate file that has the same name as the module, under a directory named VOL1.0BJ.ABS.

The example also assumes that the program will eventually be loaded Into a system with the

following memory scheme:

Locations >0000 through >BFFE are in ROM

Locations >C000 through >FFFE are in RAM

0001
o002
0003
0004

0005
Q006

Qo7
QQo8

0Q09
0010

0011

oo12
Q013
Q014
Q013
Q016
0017
qois
Qo119
0020

0000
Q000
0002
Q004
0004
Qo008
000A
000¢
Q0Q0E
oC10
ao1z2
¢o14
0014
coig
001A
001C
Q000
0Coo
Q000
Q000
0000
0000
ooo2

NO ERRORS,

coz20
0000+
1604
Q4aA0
Q0QQ0
co20
Q000+
8800

MDAQOQO

MDA100

0000+

1502
0&A0
0000
03A0
0002+
10F1

0000

03E7
0000

IDT ‘MODA’
REF MODB.MODC
PSEG

MOV @FLAG. RO

JNE MDA1QO
BL eMoDB

Moy @FLAG, RO
c RO: @LIMIT

JGT MDAZ00

" BL &MODC

MDA20Q0

WP

FLAG

LIMIT
CNTR

INC @CNTR

JMP MDAOOO
DBEG

BSs 32
CSEQ ‘COMIi’
DATA O

CSEG ‘CcOM2’
DATA 9799
DATA O

END

NO WARNINGS

Figure 7-1. MODA Assembly Listing — Absolule Memory Partitions

72

2270522-9701

Linking Absolute Memory Parlitions

0001 IDT “MODB‘
0002 DEF MODB
0003 0000 PSEQ
0004 0000 CO20 ™MODB MOV @FLAG,RO
0002 0000+
0005 0004 8BOO Cc RO, @LIMIT
0006 0000" -
0006 Q008 1502 JeT MDB100
0007 0DOA QBAO0 INC @FLAO
000C Q000+
Q008 Q000E 045B MDB10OO RT
0009 0000 DSEc
0010 0000 0378 LIMIT DATA 888
0011 0000 CSEC ‘COMi‘
Q012 0000 0000 FLAG DATA O
0013 END
ND ERRORS, ND WARNINGS
Figure 7-2, MODB Assembly Listing — Absoiute Memory Partitions
0001 1ot ‘MOOC’
0002 DEF MODC
0003 REF MODD
0004 0000 PCEQ
0005 0000 0O2AC MODC STWP RO
00904 G002 €800 MOV RO, @SAVEWP
0004 0020%)
0007 0006 0200 LI RO, MYWP
0008 Q000"
0008 000A 0ZEO LWFI RO
000C 0000
0009 GOOE €820 MOV @CNTR, @LOCAL
0010 0002+
0012 0000+
001G 0014 ASZ0 A @FLAG, @LOCAL
0014 0000+
co18 0000+
0011 001A 0O&AO BL @MODD
001C 0000
0012 001E 0420 DEC @LIMIT
0020 0000+
Q013 0022 €020 MOV @SAVEWP, RO
ch24 Qoz0"
0014 0024 OZ2ED LWPI RO
00z8 0000
0015 002A 0458 RT
00i& 0000 DSEG
0017 Q000 MYWP BSS 32
0018 0020 SAVEWP BSS 2
0019 0000 CSEG ‘COM1~
0020 Q00D 0000 FLAG DATA O
0021 0000 CSEC ‘COMR°
0022 0000 Q3E7 LIMIT DATA 999
0023 002 0000 CNTR DATA O
0024 0000 CISECG ‘COM3I’
0025 0000 LocaL BSS 2
0025 END
NO ERRORS, NGO WARNINQS

Flgure 7-3. MODC Assembly Listing — Absolute Memary Partitions

2270522-9701

7-3

Linking Absolute Memory Partitions

0001 IDT ‘MODD’

0002 DEF MODD

Q003 0000 PSEG

0004 0000 C020 MODD ™MDV @LOCAL. RO
0002 0000+

0005 0004 1302 JEG MDD100O

0006 0006 0BAQ INC @&CNTR
0008 0002+

0007 000A AB20 MDD1QO A @CONST, @FLAG
0Q0C 0000"
CGO0E 0000+

0008 0010 0458 RT

0009 0000 DSEQ

0010 Q000 QD05 COMST DATA 5

0011 0000 CSEG ‘COM1°

0012 0000 0000 FLAG DATA O

o0b13 ooo00 CSEG ‘CoM2’

0014 0000 QO3E7 LIMIT DATA 999
0013 0002 0000 CNTR DATA O

0016 0000 CSEG 'COM3‘
0017 QQ00 LOCAL B85 2
Qol1e END

NO ERRORS, NDO WARNINGS

Figure 7-4. MODD Assembly Listing — Absolute Memory Partltions

7.3 BUILDING THE CONTROL STREAM

The control stream for this type of structure contains some baslc commands, plus commands to
position the assembler-deflned segments on prescribed boundarles. The following is the control
stream for linking the example program:

LIBRARY VOL1.0BJ.ABS

TASK PROG2
PROGRAM >2000
DATA >C000

COMMON >E000,COM2
INCLUDE (MODA),(MODB),(MODC),(MODD)
END

The TASK command defines the beginning of the segment and assigns a name to the program.

The PROGRAM command defines the starting address for the program area. This area contalns
the PSEGs from all the Included modules, The PSEGs are placed in the same order as the modules
specifted In the INCLUDE command {MODA PSEG at location >2000, followed by MODB PSEG,
MODC PSEG, and MODD PSEG).

The DATA command defines the starting address for the data area, which contains all the DSEGs

from the included modules, Again, the DSEGs are placed in the same order as the modules
specified In the INCLUDE command.

74 2270522.9701

Linking Absolute Memory Partitions

The PROGRAM and DATA commands must appear before the INCLUDE command(s} in order for
the PSEGs and DSEGs from the included modules to be placed at the specifled locations. If you
omit the DATA command, the DSEGs from the included modules are placed after the PSEGs In the
program area. If an INCLUDE command appears before the PROGRAM and DATA commands,
unpredictable results can occur.

The COMMON command defines the starting address for a common area. This area contains only
specified CSEGs. You must specify the name of a CSEG in a COMMON command In order to place
that CSEG In a specifled common area. You can specify more than one CSEG in the COMMON
command, and you can also use more than one COMMON command in the control stream. CSEGs
that are not specified in any COMMON command are placed after the last DSEG encountered.
Thus, in this example, only CSEG COM2 Is placed at address >E000. CSEG COM1 and CSEG
COMa3 are placed after the DSEG for module MODD.

You can also use several PROGRAM and DATA commands to define muitiple program and data
areas in the linked output. The following control stream shows the use of multiple PROGRAM,
DATA, and COMMON commands:

LIBRARY VOL1.0BJ.ABS

TASK PROG2
PROGRAM >2000
DATA >C000

INCLUDE (MODA),{MODB)
PROGRAM >4000

DATA . >D000

INCLUDE (MODC),(MODD)
COMMON >E000,COM2
COMMON GOM2,COM1,COM3
END

This control stream defines two program areas and two data areas. The first program area starts at
address >2000 and includes only the PSEGs from MODA and MODB. The second program area
starts at address >4000 and includes the PSEGs from MODC and MODD. The first data area, start-
ing at address >C000, contains the DSEGs from MODA and MODB; the second data area, starting
at address >D000, contains the DSEGs from MODC and MODD. If you omit the DATA commands,
the DSEGs follow the PSEGs In the corresponding program area.

This control stream also shows the continuation of a common area. The first COMMON command
defines the starting address of the common area and specifies that CSEG COM2 be placed In this
area. The second COMMON command continues the same common area by using a previously
specified CSEG rather than a starting address as the first operand. In this case, CSEG COM1 and
CSEG COM3 are placed after CSEG COM2.

Using either of the previous control streams, the Link Editor produces one output module. In some
cases, you may require multiple output modules (for example, to program multiple PROM or
EPROM devices with different parts of the same program). To obtain multiple output modules, you
must use the ABSOLUTE command and PHASE commands in the control stream.

2270522-9701 7-5

Linking Absolute Memory Partitions

The ABSOLUTE command specifies a speclal syntax definltion for the PHASE command. When
used with the ABSOLUTE command, the PHASE command specifies the beginning of a new out-
put module, but It does not define an overlay. In this case, the PROGRAM command becomes a re-
quired operand of the PHASE commands rather than a separate command. You can speclfy the
starting address of the data area(s) by using separate DATA commands or optional DATA
operands in the PHASE commands. If you use DATA operands, you must update the starting ad-
dress of the data area In each PHASE command. You can also use separate COMMON commands.
The following control stream shows the use of the ABSOLUTE and PHASE commands. Flgure 7-5
shows the memory conflguration for this example.

LIBRARY VOL1.0BJ.ABS

ABSOLUTE

COMMON >E000,COM1,COM2,COM3

PHASE 0,AAAA,PROGRAM >0000,DATA >C000

INCLUDE {(MODA), MODA DSEG requlires >200 bytes of RAM
PHASE 1,8BBB,PROGRAM >2000,DATA >C200

INCLUDE (MODB), MODB DSEG requires >8600 bytes of RAM
PHASE 2,CCCC,PROGRAM >4000,DATA >C800

INGLUDE (MODC);, MODC DSEG requires >100 bytes of RAM
PHASE 3,DDDD,PROGRAM >6000,DATA >C900

INCLUDE (MODD)

END

Although the use of DATA operands or separate DATA commands is not required, you should use
one of the two to specify starting addresses for the DSEGs. Otherwise, the DSEGs start at address
0000, which may overwrite a PSEG assigned to that location. In addition, you should establish only
one path In the control stream (deflne only one phase at each level) so that symbols are resolved
corractly,

Using this control stream, the Link Editor produces one output module for each phase defined.
Each output module contalns the PSEG from one of the example object moduies, starting at the
address specified by the PROGRAM operand. All these addresses correspond to locations in ROM
devices. The DATA operand in each PHASE command specifies the starting address for the DSEG
for that module, which corresponds to a location In a RAM device. Notlce that in each successive
PHASE command, the DATA operand is updated to ailow space for the DSEG from the previously
included module. {The comments following the INCLUDE commands Indicate the number of bytes
of RAM required by that module.}

When working with absolute memory locations, make sure you specify the correct starting ad-
dress for each area. You must also be aware of the amount of memory required for each area so
that one area does not overflow into another area. Otherwise, data might Inadvertently be
destroyed.

Once you have bullt the control stream, you can execute the Link Editor with the Execute Link

Edltor (XLE) command as described in Seclion 3. The linked output must be written to a data flle
rather than to a program file.

7-6 2270522-9701

Linking Absolute Memory Partitlons

0000
ROM DEVICE MODA PSEG
1EFE d
2000
ROM DEVICE % MODB PSEG
3FFE
<
4000
ROM DEVICE % MODC PSEG
SFFE
<
6000
ROM DEVICE > MODD PSEG
7FFE
<
8000
ROM DEVICE > NOT USED
9FFE
AQOO j
ROM DEVICE > NOT USED
BFFE
c000 S
MODA DSEG
MODB DSEG
RAM DEVICE > MODC D3ES
DFFE
<
E000
RAM DEVICE > G302 SoMe
FFFE
”

2282943

Figure 7-5. Example Memory Configuration for Multiple Output Modules

2270522-9701 7-7

Linking Absoiute Memory Partitions

7.4 READING THE LINK MAP

Figure 7-6 shows the listing file produced for the exampie program. The control stream used for
this link contalns PROGRAM, DATA, and COMMON commands. The listing file contains the same
information as that for a single task structure. The PROGRAM, DATA, and COMMON commands
cause the length of the segment to be llsted as zero. The origins listed are absolute locatlons. An
asterlsk (*) foliowing the value of a symbol name indicates an absolute locatlon. Linking absolute
code generated by the assembler (AORG assembler directive) also causes the length to be listed
as zero and the origins to be absolute locations.

04/146/82 09:54:17 PAGE 1
COMMAND LIST

LIBRARY VOL 1.0BJ. ABS

TASK PROG2
PROGRALM 22000
DATA >Lo00

COMMON >EQQ0, COM2
INCLUDE {MODA), (MODB), (MODC) , (MODD)
END

Figure 7-6. Example Listing File — Absolute Memory Partiildns (Sheet 1 of 3)

04/146/82 09t54:117 PAGE Z
LINK MAP

CONTROL FILE = VOL1.CNTRL.ABS
LINKED OUTPUT FILE = VOL1.ABSOBJ
LIST FILE = VOL1.MAP.ABS

OUTPUT FORMAT = ASCII

LIBRARIES

NG ORGANIZATION PATHNAME

1 RANDOM VOL1.0BJ. ABS

Figure 7-6. Example Listing File — Absalute Memory Partitions (Sheet 2 of 3)

7-8 2270522-9701

PHASE O,

MODULE

MODA
$DATA
MODB
$DATA
MODE
4DATA
MODD
$DATA

COMMON
CoM2

comMi
ComM2

NAME

MODB

PROG2 QRIGIN = 0000

NO ORIOIN LENGTH
1 2000 CO1E
1 cooo 0020
2 201E 0010
2 cozo 0002
3 202E 002C
3 co22 0022
4 205A 0012
4 c044 0002
NO ORIGIN LENGTH
4 £000 0004
4 Co44 0002
4 co4g 0002
VALUE NO

Z201E# 2

Linking Absolute Memory Parlitions

04/16/82 09154:17 PABE 3

LENGTH = 0000

TYPE DATE TIME CREATOR
INCLUDE, 1 04/156/82 0932100 sSDsSHMAC
INCLUDE, 1 04/146/782 09:41:3137 SDSMAC
INCLUDE, 1 04/146/82 09:50: 12 SDSMAC

INCLUDE, 1 04/16/82 09:153:43 SDSHAC

DEFINITIONS

NAME VALUE NO NAME VALUE NG NAME VALUE NO

MoDC 202E* 3 t10DD 205A# 4

##us LINKING COMPLETED

Figure 7-6. Example Listing File — Absolute Memory Partitions (Sheset 3 of 3)

2270522.9701

7-9/17-10

8

Partial Linking

8.1 INTRODUCTION

Partial linking allows you to link only some of the modules required by a program at one time. The
output of a partial link consists of a single module; this module Is not executable and must even-
tually be linked with other modules to form an executable program. You can use partial llnks for
the following purposes:

* Toreduce the number of external symbois In a program. By resolving some of the exter-

nal symbols in a partial link, you can reduce the amount of memory required by the Link
Editor in a subsequent link.

¢ Tolink a complete set of modules that can be used by more than one program. Using

~ partial links in this manner reduces execution time in each subsequent link. You can

use the output of a partlal link in either directory or sequentlal librarles. You must use
partial links to bulld sequential llbraries.

This section explains the structure of a partlal link and provides an example. It also explains how
to build the control stream and read the link map for a partlal link.

8.2 PARTIAL LINK STRUCTURE

In a partial link, you must include all the modules within a single task segment; you cannot define
a procedure segment, program segment, or overlay in the control stream. Also, you cannot specify
Image format since the output of a partial link Is not executable. In a subsequent link where the

entire program is being linked, you can place the output of a partial link in any segment or overlay
defined.

As an exampie, this section uses three object modules to form an entire program. First, a partial
link Is used to link two of the object modules. Then, the output of the partial link is linked with the
third module to form an executable program, Figure 8-1 through Figure 8-3 contain assembly
listings of the example modules (MODA, MODB, and MODC). The examples assume that each
module is contained in a separate file that has the same name as the moduie, under a directory
named VOL1.08J.PART.

Modules MODA and MODB are used in the partial link. These modules contain PSEG, DSEG, and

CSEG directives, as well as DEF and REF directives for a number of symbols. Module MODC is
used in the subsequent link, along with the output of the partial link, to form the entire program.

2270522-9701 81

Partlal Linking

The Link Editor resolves all the external references (REF tags) externally defined (DEF tags) by
modules included In the partlal link. Any references that cannot be resolved in the partial link re-
tain the REF tags in the output. The Link Editor also provides commands that aliow you to define
the scope of external definitlons (DEF tags) within a partial link. These symbols are defined as
either global or local (not global).

The Link Editor retains the DEF tags for all global symbols in the output of the partial link. Thus,
global symbols can be referenced by other modules In subsequent links. Unless you specify other-
wise, the Link Editor treats all external definitlons as giobal symbols.

Local symbols apply only to the current partial link. The Link Editor uses these symbols to resolve
references to them within the partial link, but it does not retain the DEF tags for local symbols In
the output. Symbols not required by modules In subsequent links should be specified as local.
This reduces the symbol table size and the amount of memory required in subsequent links.

The Link EdItor collects the PSEGs, DSEGs, and CSEGs from modules Inciuded in the partial link
In the same manner as It does for single tasks. (Refer to Sectlon 3.} The collection of each seg-
ment type is also tagged as a PSEG, DSEG, or CSEG(s) in the linked output. The output DSEG is
the total of all input DSEGs (unless you also use the SHARE command). The Link Editor produces
only one copy of a given CSEG, retaining the CSEG’s original name.

0001 IDT ‘MODA’
0002 DEF MODS :
0003 , * REF §YM1, SYM2, 3YM3, SYM4
0004 0000 PSEO
0005 0000 C3EO MDS000 MOV @FLAG. R1S
0002 0000+
0006 0004 0&6A0 BL eayMt
0006 0000
0007 0008 CBAF MOV @SYM2(RL5). @SYM3(R14)
000A 0000
000C Q000
0008 0QOE €80 MOV @FLAG, @SYM4
0010 0000+
0012 0000
000% 0014 0380 RTWP
0010 0000 DSEQ
00t1 0000 0004" MODS DATA MDSWP. MDSOOO
0002 0000 °
0012 0004 MDSWP BE3 32
0013 0000 CSEQ@ ‘COML‘
0014 0000 0000 FLAG DATA O
0018 END
NO ERRORS. ND WARNINGS

Figure 8-1. MODA Assembly Listing — Partlal Linking

82 22705229701

0001
0002
0003
0004

0005
0006

Q007

0008
0007
0010
0011
ooia
Q013
0014
0015
Q015
Q017

0000
0000
o002
0004
Q006
eleld])
0004
000C
Q00E
0010
0012

0000
0000
0000
0000
0000
0000

NO ERRORS,

C3A0
ogoo"
05A0
Q900"
05A0
0000+
€820
oooo"
Q000+
0458
Q00A
Q004

1200

Q000

SYM1

SYM=2
SYM3

DATA
FLAG

BUFF

IDT
DEF
PSEG
MOV

INC

INC

MOV

RT
EQuV
EQU
DSEG
DATA
CSEG
DATA
CSE@
BSS
END

ND WARNINGS

Partial Linking

‘MODB *
SYM1., 8YM2, SYM3

@DATA, R14
@DATA
@FLAG

@DATA. @BUFF

10
4

>1000
ICDHI s
Q
‘coMz2’
2

Figure 8-2. MODB Assembly Listing — Partlal Linking

0001
0002
0003
0004
0005

0004

0007
Qo008
Q002
Q010
0011
0012

Q000
0000
o002
0004
0004
0008
2004
0000
0000
0000
Q000

NO ERRORS,

0420 TCOP

0000
cB20
Q000+
Q000"
10FA

Q000 8yHé4

0000 BUFF

1DT
DEF
REF
PIEG
BLWP

MoV

JMP
DEEG
DATA
CSEQ
DATA
END

ND WARNINGS

‘MODC
sSYM4
MODS
@MoDS

@BUFF. e8YM4

TOP

o
‘coMz2’
0

Figure 8-3. MODC Assembly Listing — Partial Linking

22705229701

8.3

Partlal Linking

8.3 BUILDING THE CONTROL STREAM

The control stream for a partial link contains the same basic commands as that for a single task. In
addition, the control stream must contain the PARTIAL command to specify a partial link. The
PARTIAL command must appear before the TASK or PHASE 0 command. The following is a con-
trol stream for linking modules MODA and MODB in a partial link:

PARTIAL

LIBRARY VOL1.0BJ.PART
TASK PART1

INCLUDE (MODA}(MODB}
END

Using this control stream, the Link Editor produces a single output module. The TASK {(or PHASE 0)
command assigns a name to the output module (PART1 in this example). The module name is Im-

portant only if the output module is to be used in a sequentlal library. (Refer to Section 3 for more
information on the use of libraries.)

The output module also contains a PSEG, DSEG, and CSEGs arranged In the following order:

MODA PSEG | _
MODB PSEG] = PART1 PSEG
MODA DSEG | _
MODB DSEG } = PART1 DSEG | |
* CSEG COM1 . L o N

CSEG COM2

By default, the Link Editor retains all the DEF tags in the output module. Notice from the assembiy
listings that MODA and MODB contain several external symbols (SYM1, SYM2, SYM3) that are not
required by MODC, Therefore, you do not need to retain them In the output module. To suppress
the DEF tags for these symbols in the output, you can declare the symbols as local, using the
NOTGLOBAL command as follows:

PARTIAL ,
LIBRARY VOL1.0BJ.PART
NOTGLOBAL SYM1,SYM2,SYM3

TASK PART1
INCLUDE (MODA)(MODB)
END

Alternatively, it the modules contain more local symbols than global symbols, you can use the
GLOBAL command in conjunction with the NOTGLOBAL command as follows:

PARTIAL ‘

LIBRARY VOL1.0BJ.PART

NOTGLOBAL

GLOBAL MODS

TASK PART1

INCLUDE (MODA),(MODB)

END (

84 2270522-9701

Partial Linking

Since the NOTGLOBAL command has no operands, it declares all symbols to be local. The
GLOBAL command then declares only symbol MODS to be global. {Symbol MODS is the only
external definition required by MODC In the subsequent link.)

Using this control stream, you can execute the Link Editor with the Execute Link Editor (XLE) com-
mand as described in Sectlion 3. In a partial link, the linked oulput must be written to a data file
{not a program file). This example assumes the output is written to a file named MODS under the
VOL1.0BJ.PART directory, which is detined as a directory library.

The output of the partial link can then be linked with module MODC to produce an executable pro-
gram. The control stream for this link is as follows:

FORMAT IMAGE, REPLACE
LIBRARY VOL1.0BJ.PART

TASK PROG1
INCLUDE (MODS),(MODC)
END

Remember that each partlal link produces cne cutput module; when a partially linked module Is in-
cluded in a subsequent link, all the modules included In the original partial link are also Included.
8.4 READING THE LINK MAP
Figure 8-4 shows the listing file produced for the example partlal link. This listing file contains the
same informatlon as that for single tasks {described in Section 3). In addition, the link map con-
talns a listing of the global symbols. These are listed under the header GLOBAL SYMBOLS, as
follows:

NAME VALUE NO NAME VALUE NO NAME VALUE NO
where:

NAME lists each external definition declared as global.

VALUE specifles the address within the link associated with the symbol.

NO indicates the number of the module in which the symbol Is defined. You can map this
number back to the module listings.

2270522-9701 8-5

Partial Linking

04/16/82 10:17:45 PAGE 1
COMMAND LIST ,
PARTIAL
LIBRARY VOL1.0BJ.PART
NOTGLOBAL
GLOBAL MODS
TASK PART1
INCLUDE (MODA}. (MODB)
END
Figure 8-4. Example Listing Flle — Partical Linking (Sheet 1 of 3)
04/16/82 10117245 FAGE Z
LINK #AP

CONTRCL FILE = VOL1.CNTRL.PART
LINKED QUTPUT FILE = VOL1.0BJ,PART.MODS
LIST FILE = VOL1.MAP.PART
OUTPUT FORMAT = ASCII
LIBRARIES
.'NO ORGANIZATION PATHNAME

1 RANDOM VOL1.0B.J).PART

Figure 8-4. Example Listing File — Partlcal Linking (Sheet 2 of 3}

8-6 2270522.9701

PHASE O,

MODULE
MODA
SDATA

MODB
$DATA

COMMON

COnM1
-COM2

NAME

#MODS

NAME

#MODS

NAME

SYM4

04/16/82 10:117:45

PART1 ORIGIN = Q000 LENGTH = 0054

ND ORIGIN LENGTH TYPE DATE TIME

1 0000 ole) ¥4 INCLUDE. 1 04716782 10:08: 00
1 0000 0024

2 0014 0014 INCLUDE 1 04/16/32 103 12:26
2 0024 0002

NGO ORIGIN LENGTH

2 0000 0002
2 Q000 0002

DEFINITIONS
VALUE NO NAME VALUE NO NAME VALUé'ND NAME

0000 1 sYM1 o016 2 SYH2 O00A#* 2 SYM3

GLOBAL 3YMBOLS
VALUE NQ NAME VALUE KO NAME VALUE NO - HNAME

o000 1

UNRESOCLVED REFEREMNCES
COUNT NO NAME COUNT NO NAME COUNT NC NAME

i 1

#xidt LINKING COMPLETED

2270522.9701

Figure 8-4. Example Listing File — Partical Linking (Sheet 3 of 3)

Partial Linking

PAGE 3

CREATOR
SDSHAC

SDSMAC

VALUE NO

Q004 # ?

VALUE. NO

COUNT NO

8-7/18-8

9

Error Reporting

9.1 INTRODUCTION
The Link Editor returns three different types of messages:

. Completlon messages that indicate whether the Link Editor completed execution
normally

¢ Error andfor warning messages that are written to the Link Editor listing file
. Error messages that are written to the terminal local file

Completion messages are displayed on the terminal when the Link Editor has completed exe-
cutlon. These messages are documented in the DNOS Messages and Codes Reference Manual.
The Link Editor may complete execution normally and still generate errors andfor warnings.

Normally, when an error occurs, the Link Editor stops processing the control stream. If you use
the ERROR command, the Link Editor does not process the line-on which an error occurs but
attempts to continue processing the control stream. In any case, the Link Editor produces either
no linked output or incomplete linked output. You must correct the error(s) and relink before
installing or executing the program.

When a warning occurs, the Link Editor continues to process the control stream and produces
linked output. In most cases, you should correct the condition that caused the warning and relink
before instaltling or executing the program. Otherwise, unpredictable results (possibly, a system
crash) could occur.

The following paragraphs describe the error and warning messages that are written to the listing
file and the terminal local file. When the Link Edltor executes through an SCI batch stream or a
command procedure, it also returns a condition code as the value of synonym $$CC. The possible
values of $8CC have the following meaning;:

0 — No errors or warnings
4000 — One or more warnings
8000 — One or more errors
C000 — Link Editor aborted (IO error, end aclion, syntax error)

2270522-9701 9-1

Error Reporting

9.2 LISTING FILE MESSAGES

Error and warning messages appear in the listing file at the point at which they occur. Error
messages are preceded by a string of *E characters, and warning messages are preceded by a
string of *W characters. Table 9-1 explalns the error messages, and Table 9-2 explains the warning
messages.

Many of these messages have corresponding messages in the terminal local flle. You should use
the information presented In both places to determine the cause of the error and take corrective
action.

If any errors or warnings occur, the second to the last line of the link map contains a total count of
each type.

Table 9-1. Llsting Flle Error Messages

CHECKSUM ERROR ENCOUNTERED ON RECORD xx, ACCESS NAME = name

Explanation: .
The Internal format of the Input object madule is faulty; xx Is the number of the record where
the error occurs and name Is the name of the file containing the faulty Input,

User Actlon: _
Reassemble or recompile the module specitied by name.

COMMAND EOF

Explanation: .
An unexpected end-of-flle marker was encountered in the control stream. A dollar sign ($)
appears Immedlately under the error.

User Actlon:
Make sure there Is an END command In the ¢ontro! flle.

COMMAND SEQUENCE

Explanatlon:
Either the command is not In the proper sequence In the control stream or two Incompatible
commands appear in the control siream. A dollar sign ($) appears Immedlately under the
error.

User Actfon: .
Correct any semantically Invalld constructions In the control stream.

DUPLICATE NAME
Explanation:
The same name has been used neediessly or ambiguously two or more times. The rest of the
command record is ignored. A dollar sign ($) appears immediately under the error.

User Actlon;
Remove from the control stream all duplicate references to commons or external symbols.

9.2 2270522-9701

Error Reporting

Tabie 91, Listing File Error Messages (Continued)

ILLEGAL BACK CHAIN ACCESS NAME = name SYMBOL = external symbol

Explanation:;
The internal format of the Input object module is faulty; name Is the name of the flle contain-
Ing the faulty Input and externaf symbol Is the symbol Involved In the error.

User Actlon:
Reassemble or recomplle the modute specifled by name.

ILLEGAL COMMON REFERENCE ENCOUNTERED ON RECORD xx ACCESS NAME = name

Explanation:
The internal format of the object module Is faulty; xx is the number of the record where the
error occurs and name is the name of the file containing the faulty input.

User Actlon: .
Reassemble or recompllg the module specitled by nams.

ILLEGAL DUMMY COMMAND, name

Explanation; .
A DUMMY command appears after a procedure that was not dummied; name refers to the
segment or phase in which the lllegal DUMMY command appears.

User Action;) . .
Either dummy the preceding procedure(s) or remove the DUMMY command from the control
gtream,

ILLEGAL LIBRARY NAME ACCESS NAME = pame

Explanation:
The flle or directory specifled by name does not exist or cannot be opened.

User Actlon:
Use the IfO error code shown In the terminal local flle to refer to SVC >00 errors in the SVC
sectlon of the DNOS Messages and Codes Reference Manual.

ILLEGAL OVERLAY SEGMENT

Explanation:
Appears only when linking COBOL programs; the internal format of an input object module is
bad.

User Actlon:
Recompile the modules containing COBOL segments.

ILLEGAL TAG ENCOUNTERED ON RECORD xx, ACCESS NAME = name

Explanation:
The internal format of the Input object module is faulty; xx is the number of the record where
the error occurs and name is the name of the flle containing the fauity input.

User Action:
Verlfy that the files specified by name is an object file. If so, reassemble or recomplle the
module.

2270522-9701 9.3

Error Reporting

Table 3-1. Listing File Error Messages (Continued)

INTERNAL LINKER BUG, xx

Explanation:
A bug (xx) in the Link Editor has caused processing to terminate.

User Actlon:
Communlcate the problem to your customer representative.

NO FIRST INPUT RECORD, ACCESS NAME = name

Explanation:

The file specifled by name exists, but an end-of-file marker was ancounterad on the first read.

User Actlon:
Reassemble or recompile the module specifted by name.

NO TASK COMMAND

Explanation;
The control stream does not contain a TASK or PHASE (¢ command.

User Actlon:

Make sure there is either a TASK or PHASE 0 command in the control stream.

PREMATURE END OF FILE ENCOUNTERED, ACCESS NAME = name

Explanatfon;
The last record of the input object module Is not a coton () record.

User Action:
Reassemble or recompile the module specified by name.

SIZE

Explanation:

Elther a number exceeds the allowable range or a LIBRARY or INCLUDE command operand

has too many characters. A dollar sign {$} appears immediately under the error.

User Actlon:
Correct the erroneous number or pathname In the control stream.

SYNTAX

Explanation;

A rule of syntax for Link Edltor commands has been violated. A dollar sign ($) appears

immediately under the error.

User Action:

Correct the syntax errors in the control stream, (Refer to Sectlon 2 for correct syntax).

9.4

2270522.9701

Error Reporting

Table 9-1. Listing File Error Messages (Continued)

UNABLE TO ASSIGN OVERLAY ID

Explanation:
IMAGE format only. Indicates that no overlay IDs are available In the program file.

User Actlon:
Delete some overlays or use a different program flle.

UNABLE TO BACKSPACE INPUT FILE AGCESS NAME = name

Explanation;
A backspace operatlon on a sequential library falled.

User Actlon:

Use the I/O error code shown in the terminal local flle to refer to SVC >00 errors In the SVC
section of the DNOS Messages and Codes Reference Manual.

UNABLE TO CLOSE QUTPUT FILE ACCESS NAME = name

Exptanatlon:
An error occurred while trying to clean up and close thé output file.

User Action: .
Use the error code shown in the terminal local flle to refer to.SVC >00, SVC >25, and SVC >27
errors in the SVC section of the DNOS Messages and Codes Reference Manual.

UNABLE TO FIND PROCEDURE name

Explanation:
IMAGE format only. A procedure that was dummled does not exist on either the output pro-
gram file or the S$SHARED program flle,

User Action;
Make sure you have specifled the correct program file or do not dummy the procedure.

UNABLE TO INSERT OVERLAY

Explanation:
IMAGE format only. An install operatlon falled. The error may have been caused elther by a
delete-protected segment or overlay or by fallure to speclfy the REPLACE optlon in the con-
trol stream.

User Action:
Unprotect the segmant or specify REPLACE. f these methods do not work, use the error
code shown in the terminal local file to refer to SVC >00, SVG >25, SVC >26, and SVC >27
errors In the SVC seclion of the DNOS Messages and Codes Reference Manual.

2270522-9701 9.5

Error Reporiing

Table 9-1. Listing File Error Messages (Continued)

UNABLE TQ INSERT PROCEDURE

Explanation:
IMAGE format only. An install operatlon falled. The error may have bean caused elther by a
delete-protected segment or overlay or by fallure to speciy the REPLACE option in the con-
trol stream.

User Actlon:

Unprotect the segment or speclfy REPLACE. If these methods do not work, use the error code
shown in the terminal local file to refer to SVC >00, SVC >25, SVC >26, and SVC >27 errors In
the SVC sectlon of the DNOS Messages arid Codes Reference Manual.

UNABLE TO INSERT TASK

Explanation: :
IMAGE format only. An Install operatlon failed. The error may have been caused elther by a
delete-protected segment or overlay or by fallure to specify the REPLACE option.

User Action:
Unprotect the segment or specify REPLACE. If these methods do not work, use the /O error
code shown in the terminal local flle to referto SVC >00 and SVC >26 errors in the SVC sec-
tlon of the DNOS Messages and Codes Reference Manual.

UNABLE TO OPEN CONTROL FILE ACCESS NAME = name

Explanatlon:
The flle specifled by name does not exist or cannot be opened.

User Action:
Use the I/ error code shown In the terminal local flle to refer to SVC >00 errors in the SVC
section of the DNOS Messages and Codes Reference Manual.

UNABLE TO OPEN INCLUDE FILE ACCESS NAME = namse

Explanatlon:
The file specified by name does not exist or cannot be opened.

User Actlon:
Use the /O error code shown in the terminal local file to refer to SVC >00 errors In the SVC
sactlon of the DNOS Messages and Codes Reference Manual.

UNABLE TO OPEN OUTPUT FILE ACGCESS NAME = name

Explanation:
The flle specifled by name does not exist or cannot be opened.

Ussr Action:
Use the HO error code shown In the terminal Iocal flie to refer to SVC >00 errors in the SVC
sectlon of the DNOS Messages and Codes Reference Manual.

9.6 ' 2270522.9701

Error Reporiing

Table'9-1. Listing File Error Messages (Continued)

UNABLE TO READ CONTROL RECORD ACCESS NAME = name

Explanation:
A read operation on the control flle failed.

User Acilon:
Use the VO error code shown In the terminal local flle to rel’er to SVC >00 errors In the SVC
section of the DNOS Messages and Codes Reference Manual.

UNABLE TO READ OVERFLOW RECORD

Explanation:
A read operation on a Link Editor temporary file failed.

User Action:
Use the 1O error code shown In the terminal local fle to refer to SYC >00 errors In the SVC
sectlon of the DNOS Messages and Codes Reference Manual.

UNABLE TO READ WORK RECORD

Explanation:
A read operation on a Link Editor temporary file falled

User Action:

Use the /O error code shown-In the lermlnal local flle to rel‘er to SVC >00 errors In the SVC
section of the DNOS Messages and Codes Reference Manual.

UNABLE TO WRITE OUTPUT RECORD ACCESS NAME = name

Explanation:
A wrlte operation o the output file falled.

User Actlon:
Use the WO error code shown In the terminat local flle to refer to SVG >00 errors in the SVC
sectfon of the DNOS Messages and Codes Reference Manual.
UNABLE TO WRITE OVERFLOW RECORD

Explanation:
A wrlte operation to a Link Editor temporary flle falled.

User Actlon;

Use the O error code shown in the terminal local flle to refer to SVC >00 errors In the SVC
sectlon of the DNOS Messages and Codes Reference Manual.

22705229701 | 9.7

Error Reporling

Table 9-1. Listing File Error Messages (Continued)

UNABLE TO WRITE PROGRAM FILE RECORD ACCESS NAME = name

Explanation: .
A write operation 1o the output file failed.

User Actlon;

Use the IfO srror code shown in the terminal local flle to refer to SVC >00 errors In the SVC
sectlon of the DNOS Messages and Codes Reference Manual.

UNABLE TO WRITE WORK RECORD

Explanation:
A write operatlon to a Link Editor temporary flle falled.

User Actlon:

Use the VO error code shown in the terminal local file to refer to SVC >00 errors In the SVC
saction of the DNOS Messages and Codes Relerence Manual.

9-8 2270522-9701

Error Reporting

Tabie 9-2. Listing File Warning Messages

ADDRESS SPACE OVERFLOW

Explanation:
The program counter (PC) value tn the linked output exceeded >FFFF (64K).

User Action:
Reduce the size of the program by using overiays or program segments.

DUPLICATE IDT NAME

Explanation:
The IDT for the modute matches a module already included In the iInk. This warning can

occur when a module is included more than once within the same segment or phase In the
control stream or when more than one module has the same IDT.

The Link Editor retains all original IDTs In the symbol table for the linked output (I tags). A

duplicate IDT prevents full symbolic debugging. Refer to Appendlix A for an explanation of
the | tag.

User Action:

Determine the causse of the duplicate IDT. If the duplicate IDT Is caused by a module belng
included more than once, correct the control stream. If the duplicate IDT Is caused by dif-
ferent modules, change the IDT name for a moduie to a unique symbol and reassemble or
recompile the module.

MULTIPLE SYMBOL DEFINITION

Explanation:
The lIsted symbol Is deflned more than once. !t Is assigned the value of the flrst occuirence.

User Action: ,
Determinse the cause of the multiple symbol definition. In some cases, this may be desirable.

SHARE SPACE

Explanation:
When two or more modules share a data area In the linked output (see the SHARE commandy},

the first module included must have the largest DSEG. This message warns that the DSEG
from a subsequently Included module is larger.

User Actlon:

Either include the module with the largest DSEG flrst or adjust the size of the DSEG in the
subsequenf module and reassemble or recomplle the module,

2270522.9701) 89

Error Reporiing

9.3 TERMINAL LOCAL FILE MESSAGES

The terminal local file contains error messages only. Table 9-3 explains these messages. Some of
the messages include the phrase CODE = xxxx ; Table 9-4 expiains the value of xxxx.

Table 9-3. Terminal Local Flle Error Messages

BAD OBJECT FORMAT

Explanation:
An Input module was In a format which the Link Editor could not understand,

User Actlon:
See listing file for more Information.

CHECKSUM ERROR

Explanation:
Checksum did not verify on an input record.

User Actlon:
See listing file for more Information.

CONTROL FILE IfO ERROR, CODE = xxxx

* Explanation: '
An /O operation In the control file falled.

User Actlon:
See listing flle for more Information; refer to Table 9-4 for an explanation of the error code.

ILLEGAL TAG

Explanation:
The object code contains an lllegal tag or Is missing a zero tag.

User Actlon:
See listing flle for more Informatlon,

INPUT FILE O ERROR, CODE = xxxx

Explanation:
Unable to open or access Input flle,

User Actlon:)
See lIsting flle for more information; refer to Table 9-4 for an explanation of the error code,

9.10 . 2270522-9701

Error Reporting

Table 9-3. Terminal Local File Error Messages (Continued)

INSUFFICIENT MEMORY REQUESTED

Explanation:
The link requested is too large to successfully complete.

User Action:
Reduce the number of external symbols or modules using partlal links, or reduce the number
of phases defined in the control stream. '

INVALID LIBRARY NAME

Explanation:
A library specitled could not be opened.

User Actlon:
See lIsting flle for more informatlon; refer to Table 9-4 for an explanation of the error code.

LINK EDITOR BUG

Explanation: _
Error occurred within the Link Editor.

User Action:
See listing flle and notify your custemer representative.

LINK EDITOR TASK ERROR xxxx, WP = nnnn, PC = nnnn, ST = nnnn

Explanation: l
Task error xxxx has occurred, WP indlcates the value of the workspace pointer; PC Indicates
the value of the program counter; ST indlcates the value of the status reglster.

User Action:)
See the System Log Messages section of the DNOS Messages and Codes Reference Manual
for an explanation of the task error code. If the conditlon Is not correctable, contact your
customer representative.
LIST FILE #O ERROR, CODE = xxxx

Explanatlon:
Unable to open or write the list file.

User Action:
Ses Table 9-4 for an explanation of the arror code.

MISSING OR MISPLACED COMMANDS

Explanation:
The link control file contains semantic errors.

User Action:
See listing flle for more information.

2270522-971 9-11

Error Raporting

Table 9-3. Terminal Local File Error Messages (Continued)

NO FIRST INPUT RECORD

Explanation:
The {irst read operation of an input file falled.

User Action:
See listing file for more information.

OUTPUT FILE I/O ERROR, CODE = xxxx

Explanation:
An IfO operation on the output file failsd.

User Actlon:
See listing file for more Information; rafer to Table 9-4 for an explanation of the error code,

OVERFLOW FILE I/O ERROR, CODE = xxxx

Explanation:
An IfO operation on a Link Edltor temporary flle failed.

User Actlon:
See listing file for more Information; refer to Table 9-4 for an oxplanation of the error code.

OVERLAY IMAGE ERROR, CODE = xxxx

Explanation:
An Install operation falled.

User Actlon:
See listing flle for more information; refer to Table 9-4 for an explanation of the error code,

PREMATURE END OF FILE

Explanation:
The last record of an input file was not a colon record.

User Actlon:
See lIsting file for more information.

PROCEDURE IMAGE ERROR, CODE = xxxx

Explanation:
An instail procedure operation failed.

User Action:
See listing file for more information; refer to Table 9-4 for an explanation of the error code.

912 2270522.9701

——

Error Reporting

Table 9-3. Terminal Local File Error Messages (Continued)

SYNTAX ERROR

Explanation:
The link control file contains a syntax error.

User Action: _
See listing file for more information.

TASK IMAGE ERROR, CODE = xxxx

Explanation:
An install operation failed.

User Action:
See listing file for more information; refer to Table 9-4 for an explanation of the error code.

UNABLE TO GET MEMORY

Expianation:
A Get Memory operation failed.

User Action:
Try the link again when more memory Is available.

UNABLE TO LOAD OVERLAY

Explanalion: .
One of the overlays of the Link Edltor could not be loaded.

User Action:

Verify that the .S$LANG program file has not been changed. If you fInd the file has not been
changed, notify your customer representative about your situation.

WORK FILE IO ERROR, CODE = xxxx

Explanation:
An IfQ operation on a Link Editor temporary file failed.

User Action:
See listing file for more informatlon; refer to Table 9-4 for an explanatlon of the error code.

2270522.9701 8-13

Error Reporting

Table 9-4. Error Codes

CODE = xxxx Meaning
80xx or 00xx DNOS, IO Internal error code. Refer to the SVC sectlon of the
DNOS Messages and Codes Reference Manual for errors for
SVC >00. ' :
81FF An attempt was made to suppreas (dummy) the linked output

of the task segment when Image format |s used.

8100 Flie is already open (internal Link Editor error). Call your
customer representative,

8102 File Is not opan (Internal Link Editor error). Call your customer
representative.

nmMxx DNOS Internal error code. Refer to the SVC section of the
DNQS Messages and Codes Reference Manual for errors for
SVC >am.

9-14 2270522-9701

Appendix A

Object Code Format

A.1 INTRODUCTION

This appendix explalns the format of the object code produced by either the assembler, a com-
piler, or the Link Editor. This information is not required for understanding Link Editor operation,
However, it is helpful if you want to read object code {o check certain errors or to determine if an
object file is In valid format,

Figure A-1 shows an example object file containing two object modules. Object modules consist
of two or more records. The records contain a number of tag characters; each tag character is
followed by one to three flelds. The first character of a record is the first tag character. The next
tag character follows the end of the field or fields associated with the preceding tag. The end of
each record is marked by an F tag, which terminates the object code portion of the record.

An identifler appears to the right of each record. The identifler conslsts of the first four characters
of the module name and, in standard object format, four diglts that specify the record number
within the module.

Each object module is terminated by a colon {:) record. (The colon appears in the first column of
the record.) The colon record indicates the date and time the module was created and the utility
that created the module (LINKER for the Link Editor and SDSMAC for the assembiler).

Table A-1 lists the tag characters and the field values associated with each tag. Unless otherwise
noted in the table, the size of each fleld is either four characters (ASCIl object format) or four
binary digits (compressed object format). Variations in this size are noted by an integer value in
parentheses following the fleld value description. The tags are listed in groups, where the group
heading indicates the general function of the tags in that group. The following paragraphs explain
the tags by functlonal group. The order in which these tags appear will vary from module to
module.

Q001EPROC1H AGQOOBO202C002AR0283BQC01B1302B0202C002CBC4A0C002E7F274F FROCOGO1L

BO45BBC120C002CBA120C0028B045BI0C00OMODX 10014HODY 7F3B4F PROCOOOZ
H 04/15/82 146:132:134 LINKER i.1.0 PROCOCGO3
000464TSK1 AQOZ20CON4CCO0ZECON48A0026B1111B222210020M0DA AOORE7F20PFTSKIQOG]

BD80O2CO07ERQGAOCOOLEROZ0IBO00 1 BOGAOCO000BLE20CA02ZAL00Z2CB0LA0CA0L47F IBFF TSK1G0O02Z
B2FE0CO06CA004CERO40OBCOAOCOO7EBADAOCAO7CBCROZCOOZOBO4SEEOAVDANOTETFF1461F TEK1O0U3S,
BOQOOBQOOOROQCOIQOZEMODR 100&EHODC 7F73AF TS 10004
: 04/15/82 16832136 LINKER L.1.0 TSK 10005

Figure A-1. Example Object File

22705229701 A1

Object Code Format

Table A-1. Object Code Tags
Tag Fleld 1 Fleld 2 Field 3

Module Detinitlon Tags:

0 PSEG length Module name (8) -

M - BSEG length $DATA 0000

M Blank common length $BLANK Common #

M CSEG length Common name (6} Common #

M CBSEG length $CBSEG CBSEG #
Entry Point Definition Tags:

1 Absolute address — —

P/R address - —

Load Address Tags:

9 Absolute address - -

A P/R address — -

S D/R address —_ —_

P C/R address Common or CBSEG # —
Data Tags:

B Absolute value — -

c P/R address —- -

T D/R address - —_

N CIR address Common or CBSEG # —
External Definition (DEF) Tags:

6 Absolute value Symbol (6) —

5 P/R address Symbol (8) —

w D/R or C/R address Symbol (8) Common #
External Reference (REF) Tags:

3 P/R chain address Symbol (8) —

4 Absolute chain address Symbol (5) —

X D/R or C/R chain address Symbol (8) Common #

E Symbol index number Absolute offset -
Secondary External Reference Tags:

v PIR chain address Symbol (6) -

Y Absolute chain address Symbol (6) —

Z DIR or CIR chain address Symbol (6) Common #

u 0000 Symbol (8) —

A-2

2270522-9701

Object Code Format

Table A-1. Object Code Tags (Continued)
Tag Fleld 1 Fleld 2 Fleld 3
Symbol Definition Tags:
G P/R address Symbo! (6} -
H Absolute value Symbo! (6) -
J DIR or CIR address Symbol (6} Common #

Checksum and End-of Record Tags:

7 Value
8 Any value
F —

Load Bias Tag:
D Absolute address
Repeat Count Tag (FORTRAN Only):
R Value
Frogram ID (IDT) Tag {Link Editor iny):
| | PIR address
CBSEG Reference Tag (COBOL Only):
Q Racord offset

Notes:

. Repeat count
Module name (8}

CBSEG #

PIR indicates program relocatable (within a PSEG).
D/R indlcates data ralocatable {within a DSEG).
C/R indicates common relocatable {within a CSEG).

CBSEG indicates COBOL segment.

2270522-9701

A-3

Objecl Code Format

A.2 MODULE DEFINITION TAGS

The module definition tags include the 0 tag and M tags. The 0 tag defines the program-relocatable
code (or PSEG portion of the module). This tag consists of an ASCII zero in standard object code
format and a blnary one in compressed object code format.

The 0 tag is followed by two flelds; fleld 1 contains the number of bytes required for the PSEG area
for that module and field 2 contains the module name. For a Link Edltor module, the module name
is obtained from the name assigned in a PROCEDURE, TASK, PHASE, or SEGMENT command.
For an assembler module, the module name is obtalned from the IDT directive. When no IDT direc-
tive Is used, the field contains bilanks,

An M tag is used only when the module contains DSEGs, CSEGs, or CBSEGs (COBOL segments).
The M tag is followed by three flelds. Field 1 contains the number of bytes required for the DSEG,
CSEG or CBSEG area for that module. Fleld 2 contains a six-character Identifler, which Is $DATA
for DSEGs, $BLANK for blank (unnamed) CSEGs, and a defined name for named CSEGs. Field 3
consists of a four-character hexadecimal number deflning a unique common number to be used
by other tags that reference or Initialize data In that particular CSEG. For DSEGs, this common
number is always zero, For CSEGSs (Including blank CSEGs), the common numbers are assigned in
increasing order, beginning at one and ending with the number of different CSEGs. Modules pro-
duced by the assembler can contain a maximum of 127 different CSEGs, -

A.3 ENTRY POINT DEFINITION TAGS

The 1 and 2 tags deflne the entry points for a program. The 1 tag is used when the entry address Is
absolute and the 2 tag Is used when the entry address_is program relocatable. Field 1 of the tag
contains the entry address in hexadeclmal. One of these tags may appear In the object.file. The
fleld value Is used by a ROM loader to determine the entry point at which execution starts when
loading is complete.

A.4 LOAD ADDRESS TAGS

The 9, A, S, and P tags are used with load addresses for data that follows. A load address is re-
quired for a data word that Is to be placed in memory at some address other than the next address.
A 9 tag Is used when the load address Is absolute; an A tag Is used when the load address Is pro-
gram relocatable; an S tag is used when the load address Is data relocatable; and a P tag is used
when the load address is common relocatable.

Field 1 of these tags contains the address at which the following data word is to be loaded. Field 2
of a P tag contains a common number.

A-4 2370522.9701

Object Code Format

A5 DATA TAGS

The B, G, T, and N tags are used with data words. The B tag is used when the data is absolute, that
is, an instruction word or a word that contains text characters or absolute constants. The C tag is
used for a word that contains a program-relocatable address. The T tag Is used for a word that con-
tains a data-relocatable address. The N tag is used for a word that ¢ontains a common-relocatable
address.

Field 1 of these tags contains the data word. This data word Is placed in the memory locatlon
specifted in the preceding load address field or in the memory locatlon that follows the preceding
data word. Field 2 of an N tag contains a common number.

A.6 EXTERNAL DEFINITION (DEF) TAGS

The 5, 6, and W tags are used for external definitions (DEF symbols). The 5 tag is used when the
address of an external definition is program relocatable. The 6 tag is used when the address is
absolute. The W tag is used when the address is data or common relocatable.

The field values for these tags provide linking information for these external definitions. Fleld 1
contains the address and fleld 2 contains the external symbol. Field 3 of a W tag contains a
common number.

A.7 EXTERNAL REFERENCE (REF) TAGS-

The 3, 4, and X tags are used for external references (REF symbols). The 3 tag is used when the last
appearance of the symbol is In program-relocatable code. The 4 tag is used when the last
appearance is in absolute code. The X tag Is used when the last appearance Is In data- or common-
relocatable code.

The fleld values for these tags provide linking information for external references. Resolution of a
reference is done through a back chain operation. Each location in the chain points to the
preceding appearance of the symbol. Field 1 contalns the location of the last appearance of the
symbol. Field 2 contains the symbol, and field 3 of an X tag contains a common number.

When field 1 of a 4 tag contains zero, it signifies that there is no back chain for the referenced sym-
bol. Otherwise, the value corresponding to the referenced symbol Is placed in the location
specified. The specified location’s previous value is used as a polinter to the next locatlon In the
chain until an absolute zero Is encountered. This marks the end of the chain.

The E tag Is also used for external references. An E tag is used when a nonzero quantlity Is to be
added to a reference. Fleld 1 identlfies the reference by occurrence in the object code (0, 1, 2, and
so forth). Fleld 2 contains the value to be added to the reference after the reference is resolved.
The value in field 1 is an index into references identified by 3, 4, V, X, Y or Ztags In the object code.
The list is maintained by order of occurrence; that is, the flrst entry in the list is the symbol located
in fleld 2 of the flrst 3, 4, V, X, Y, or Z tag. The index to that reference in the E tag wouid be 0000.

2270522-9701 A-5

Object Code Format

A.8 SECONDARY EXTERNAL REFERENCE TAGS

The V, Y, and Z tags are used for secondary external references. The V tag is used when the last
appearance of the symbol Is in program-relocatable code. The Y tag Is used whan the last
appearance of the symbol Is in absolute code. The V tag Is used when the last appearance of the
symbol Is In data or common relocatable code,

Fleld 1 of these tags contalns the location of the last appeérance of the symbol and field 2 con-
talns the symbol. Fleld 3 of a Z tag contains a common number.

The U tag is generated by the assembler LOAD directlve, which is used with secondary references.
The symbol specifled is treated as an external reference. Field 1 contains zeros. Field 2 contains
the symbol for which the loader will search for a definition.

A.9 SYMBOL DEFINITION TAGS

The G, H, and J tags are used when the symbol tables are included in the output modules. The G
tag Is used when the location or value of the symbol is program relocatable. The H tag is used
when the location or value is absoiute. The J tag is used when the location or vaiue is data or
common relocatable.

Fleld 1 of these tags contains the location or value of the symbol. Field 2 contains the symbol to
which the locatlon is assigned. Field 3 of a J tag contains a common number.

A.10 CHECKSUM AND END-OF-RECORD TAGS

The 7 tag precedes the checksum, which Is an error detection word. The checksum is formed as

the record Is being written. It is the two’s complement of the sum of the eighi-bit ASCII values of
the characters of the record, from the first tag of the record through the checksum tag.

The 8 tag is used to ignore the checksum, which Is contained in field 1.

The F tag indicates the end of the record. it may be followed by blanks.

A.11 LOAD BIAS TAG

The D tag is used to specify a load bias. Field 1 contains the absolute address that will be used by
the loader 10 relocate the symbols when loaded. The Link Editor does not accept modules containing
a D tag.

A.12 REPEAT COUNT TAG (FORTRAN ONLY)

The R tag Is used to initlalize a number of data words in a FORTRAN module with the same value.

Field 1 contains the value to be placed in the data words. Field 2 contains the number of data
words that are to contain the value.

A6 22705229701

Object Code Format

A.13 PROGRAM ID (IDT) TAG (LINK EDITOR ONLY)

The | tag specifies the name originally assigned 1o a module {prior t¢ linking). The Link Editor
preserves the original name so it ¢can be used during debugging. Field 1 contains the starting
address of the module In the link. Field 2 contains the original module name {assigned by an IDT
directive or program ID statement).

A.14 CBSEG REFERENCE TAG (COBOL ONLY)

The Q tag is used to access referenced CBSEGs (COBOL segments). Field 1 contains a record off-
set. Field 2 contains the CBSEG number.

2270522-9701 A-7IA-8

Appendix B

High-Level Language Information

B.1 INTRODUCTION

This appendix explains how the Pascal, COBOL, and FORTRAN compilers generate some of the
object tags used by the Link Editor. The tags covered are as follows:

. IDT tags

* DEF and REF tags

. PSEG, DSEG, and CSEG tags.
This Information is provided so you can relate the material and examples covered In this manual to
a specific high-level language. You should also refer to the appropriate programmer's guide when
linking programs written in these languages.

B.2 PASCAL COMPILER

The Pascal compller generates one object module for each procedure or function declared in the
program. The IDT tag Is obtained from the entry point name In the declaration.

The compiler automatically generates a DEF tag from the entry polnt name in each declaration.
Pascal modules cannot have muitiple entry points as in assembly language programs. Procedure
or functions that are referenced but not included in the program must be declared as EXTERNAL.,
The compiler also automatically generates a REF tag for each procedure or function referenced.

The executable statements in a Pascal program form the PSEGs. The COMMON declarations are
tagged as CSEGs. Pascal programs do not contaln DSEGs since data allocation is done
dynamically.

B.3 COBOL COMPILER

The COBOL compiler generates one or more object modules for a program, depending on the
structure. The iDT tag is obtained from the PROGRAM-ID paragraph.

The compiler generates a DEF tag for all defined modules and a REF tag for all CALL statements.
The interpreted statements and constant data comprise the PSEG in a COBOL program. The

DSEG is formed by the Data Division and other modifiable data in the program. COBOL programs
do not contain CSEGs.

2270522-9701 B-1

High-Level Language information

B.4 FORTRAN COMPILER
The FORTRAN compiler generates one object module for each program unit defined. The IDT tag
for the module is obtalned from the program name or program unit nams. if you do not supply a
program name, the default $MAIN Is used.

The FORTRAN compller automatlcaily generates a DEF tag for each program unit. REF tags are
generated for subprogram calls.

The executable statements in a FORTRAN program form the PSEGs. Variable and array decla-
rations are tagged as DSEGs. COMMON statements are tagged as CSEGs.

B.2 22705229701

Appendix C

Command Syntax

This appendix provides a quick reference for the link control commands, The following s an
alphabetical list of the commands, showing their syntax definitions. A brlef description of syntax
rules is given, following the command list.

Command List;

ABSOLUTE

ADJUST [n]

ALLGLOBAL

ALLOCATE

AUTO

COMMON base,name[, name . . .,name]

DATA base

DUMMY

END

ERROR _
FIND - [name. . ..,name] .

FORMAT {ASGIIICOMPRESSED!IMAGE[,FIEPLACE][,pnomy]}
GLOBAL [symbol. . .,symbol}

INCLUDE [name. . ..name] (see note 1)
LIBRARY name[,name. . . name]

LOAD ‘

MAP {REFS/INO'string'[,NO'string'. . .,NO'string’]}
NCAUTO

NOERROR

NOLOAD

NOMAP

NOPAGE

NOSYMT

NOTGLOBAL [symbol. . .,symbol]

PAGE

PARTIAL

PHASE /evel,name[,PROGRAM base][,ID n] {see note 2)
PROCEDURE name i
PROGRAM base

SEARCH (name. . . name)

SEGMENT map,name[,PROGRAM base][,ID n]
SHARE name,namel,name. . ..name]

SYMT

TASK [name][,PROGRAM base]

22705229701 C-1

Command Syniax

C-2

Notes:

1.

2.

it you do not specify a name operand, the object module(s) to be included must
immediately follow the INCLUDE command in the control stream.

If you use the PHASE command with the ABSOLUTE command, the PROGRAM base
operand is required and can be followed by an optional DATA base operand.

Syntax Rules:

1.

Commands are entered by typing In the command namé, followed by at least one blank
and then any operands required.

Command names entered can be elther the full name or only the first four characters of
the name. This also applies to the PROGRAM operand in the PHASE, SEGMENT, and
TASK command.

Muitiple operands must be separated by commas.

Each command must be on a separate line (record).

Comments must be preceded by a semicolon (;). Comments can be on a separate line or
they can follow a command and iis operand(s).

Synonyms and/or logical names can be uséd to speclfy pathnames.

The notations used in the syntax definitions are as follows:

. Items In uppercase must be entered exactly as shown except for the cbmmand

names and PROGRAM operand, which you can enter in the four-character
abbreviated form.

* [ltems in lowercase Itallcs indicate a lype of operand. Replace this with a speclfic
operand of the appropriate type.

* Items in square brackets ([]) indicate optional operands; items not enclosed in
square brackets are required.

. Items in braces ({}) Indicate a choice of enclosed operands. The cholces are
separated by slashes (/). You can enter only one of the choices.

* Anelliipsis(...) Indlcates that you can repeat the preceding operand as many times
as necessary. You must separate the operands with commas.

22705229701

Alphabetical Index

Introduction

HOW TQ USE INDEX

The Index, table of contents, list of illustrations, and list of tables are used in conjunction to ob-
tain the locatlon of the desired subject. Once the subject or topic has been located in the index,
use the appropriate paragraph number, figure number, or table number to obtain the corre-
sponding page number from the table of contents, list of illustrations, or list of tables.

INDEX ENTRIES

The following Index lists key words and concepts from the subject material of the manual together
with the area(s) In the manual that supply major coverage of the listed concept. The numbers along
the right side of the listing reference the following manual areas:

Sectlons — Reference to Sectlons of the manual appear as “Sectlons x" with the sym-
bol x representing any numeric quantity.

Appendixes — Reference to Appendixes of the manual appear as "Appendix.y" with the
symbol y representing any capital ietter.

Paragraphs — Reference to paragraphs of the manual appear as a series of
alphanumeric or numeri¢c characters punctuated with decimal points. Only the first
character of the string may be a letter; all subsequent characters are numbers. The first
character refers to the section or appendix of the manual In which the paragraph may be
found.

Tables — References to tables in the manual are represented by the capital letter T
followed immedlately by another alphanumeric character {representing the section or
appendix of the manual containing the table). The second character Is followed by a
dash {-) and a numbaer.

Tx-yy

Flgures — References to figures in the manual are represented by the capital letter F
followed immediately by another alphanumeric character (representing the section or
appendix of the manual containing the figure). The second character is followed by a
dash {-) and a number.

Fx-yy

Other entries in the Index — References to other entries in the index preceded by the
ward "“See" followed by the referenced entry.

2370522-9701 index-1

index

ABSOLUTECommand............ 231,73
Absolute Memory Partitlons 1.3.5,7.1
Commands e 2.2, 721
ControiStream 7.3
Example Listing File F7-6
LinkMap 7.4
Linking Section 7
Structure 7.2
ADJUST Command.......... 23.2,3.3.2,6.3
Ad|ustment, Boundary 23.2,33.2
ALLGLOBALCommand.............. 23.3
ALLOCATECommand............ 2.3.4,4.3
Assembier-Deflned:
Common Segment See CSEG
DataSegment See DSEG
Program Segment See PSEG
Segment 0. 3.2
Attached Procedure Segment 1.3.2
AUTOCommand 235
Automatic:
Overiay Loading............. 2.3.16,6.2,2
Searching, 1.4.3, 2.3.5,2.3.18, 3.3.1
Basic Commands 2.2, T21
Boundary Adjustment........... 232,332
C:allln(g.i Conventions 6.2.2
CBSEG ReferenceTags A4
ChecksumTags........ b A10
COBOL Compiler............ e B.3
Command:
ABSOLUTE 231,73
ADJUST....... e 2.3.2,3.3.2,6.3
ALLGLOBAL 233
ALLOCATE 2.3.4,4.3
AUTO ... i 235
COMMON 236,73
DATAc.. i, 237,73
DUMMY 2.3.8,4.3
END ...t 2.3.9,3.3
ERRCR.................... 2,3.10,3.3.2
Execute Link Editor 3.4
FINDt 2.3.11
FORMAT 2.3.12,3.3
Functions 2.2
GLOBAL 2,.3.13,8.3
INCLUDE.................... 2.3.14,3.3
LIBRARY 2.3.15,3.3.1
LOADcovunn.. 2.3.16,6.3.1
MAP 2.317,3.3.3
NOAUTO 2.3.18, 3.3.1
NOERROR...................... 23.19
NOLOAD 2.3.20
NOMAP 2.3.21,3.3.3
NOPAGE2. 3.22
NOSYMT 2.3.23,3.3
NOTGLOBAL 2.3.24,8.3
PAGEcovunn. 2.3.25
PARTIAL 2.3.26,8.3
PHASE...................... 2.3.27,6.3
Index-2

O 3.3
PROCEDURE 2.3.28,4.3
PROGRAM 2.3.29,7.3
SEARCH................... 2.3.30,3.3.1
SEGMENT................... 2.3.31,56.3
SHARE 2.3.32,3.3.2
SYMT .. 2.3.33
Syntax Appendix C
TASK, 2.3.34,3.3
XLE . o 34
Commands:

Absolute Memory Partitioning. . ..2.2, T2-1

BasiC............iiiuin, 2.2, T21

Link Control Section 2, 1.4.1

Qutputlisting 22,333, T21

Partfal Linking e 2.2, 721

Shared Procedure,.... 2.2, T21

Special Function.......... 2.2,3.3.2, T21

Symbal:

Processing.................. 2.2, T21
Resolution,... 2.2,3.3.1,T21

COMMON Command............. 2.36,7.3
Common Segment,

Assembler-Deflned See CSEG
Compller:

COBOL..........cvvvvee, B.3

FORTRAN.coovievnnns, B.4

Pascal................o0vvevununn, B.2
Compressed Object Code

Format 1.4.4,2.3.12
Control:

Commands, Link Section 2, 1.4.1

Flle,Link 1.4,1.4.1

Stream....................... 141,21

Absolute Memory Partition......... 7.3

Overlay Structure 6.3

PartialLink 8.3

Procedure/Task Structure 4.3

Single Task Structure 3.3

Task/Program Segment Structure ...5.3

G, 2.3.4,2.3.6,4.3
Dlrective 1.3.5,3.2

Data Area,Shared 2.3.32,3.3.2
DATACommand................. 2.3.7,7.3
Data: ,
Segment, Assembler-Defined ..See DSEG
Tagso A5
Bg?:ugging, Symbolic......... 2.3.23,23.33
Directive....................... 1.2,3.2
Tag 1.2,1.4.3,2.3.3,2.3.24,3.33
Tags ... A.B
Definition:
External 1.2,2.3.3,2.3.13,2.3.24,3.3.3
Tags:

EntryPoint A3

External A6

Module A2

Symbol, A9

2270522-9701

Directive:
CSEG........cviiiiiiiinnenn 1.3.5,3.2
DEF ... i i, 1.2,3.2
DSEG................cueu.. ., 1.3.5,3.2
PSEGcccvveen... 1.3.5,3.2
REF i 1.2,3.2
DSEG 2.3.4,2.3.7,2.3.32, 4.3
Directive 1.3.5,3.2
Dummied Segment 2.3.8
DUMMY Command............... 238,43
ENDCommand.................. 239,33
End-of-RecordTags.................. A0
Entry Point DefInItlon Tags A3
Entry Vector..... e ea e 1.3.1
ERRCR Command............. 2.3.10,3.3.2
Error:
Codesiviiiii it it T9-4
Messagescoovvnun.. 9.1
ListingFile T9-1
‘Terminal LocalFile T9-3
Processing................. 2.3.10, 3.3.2
Reporting.................... Section 9
Example;
Absolute Memory Partitloning F1-4
Listing File:
Absolute Memory Partition........ F7-6
Overlay Structure., F6-2
PartialLinkco... s, FB8-4
Procedure/Task Structure 4.4
Singie Task Structure 3.5
Task/Program Segment Structure ...5.4
Overiay Structure................... F1-3
Program Segment F1-2
Shared Procedure F1-1
Execute Link Editor Command.......... 3.4
External:
Definition....1.2,2.3.3,2.3.13,2.3.24, 3.3.3
Tags ..ot i i e AB
Reference 1.2
L 1 - T A7
Tags,Secondary A8
Symbol 1.2,3.2
Files, LinkEditor................. 1.4,F1-5
FIND Command.................... 2.3.11
FORMAT Command............. 2.3.12,3.3
Format:
Compressed Object Code1.4.4,2.3.12
Linking 1.4.4,2.3.12
Memorylmage.............. 1.4.4,2.3.12
ObjectCode................ Appendix A
Standard Object Code 1.4.4,2.3.12
FORTRAN Compiler B.4
Functions,Command 2.2
GLOBALCommand 2.3.13,8.3
Global Symbol 2.2,2.3.3,2.3.13,8.2

22705229701

index

High-Level Language

InformationAppendix B
IDTags,Program A.13
IDTTags .cove v iii i e A13
Image Format, Memory......... 1.4.4,2.3.12
IMAGE Optlon 33 43
INCLUDE Command 2.3. 14 a3
Language Informatlon,

High-Level Appendix B
LIBRARY Command 2.3.15,3.3.1
Librarycovvininnnnn.., 1.4,1.4.3

Directory 1.4.3.1, 2.3.15, 3.3.1

Sequential ,.......... 1.4.3.2,2,3.15, 3.3.1
Link Control:

Commands Sectlon 2, 1.4.1

Flle......coooovviiiiine.. 1.4,1.4.1
Link Editor:

Command,Execute 34

Filesciiiiii s, 1.4, F1-5

Overview Section 1
LinkMap.cviviin i, 1.4.5

Absolute Memory Partition........... 7.4

Overlay Structure . ..,............... 6.4

Partiallinkc0..... 8.4

Procedure/Task Structure 4.4

Single Task Structure 35

Task/Program Segment Structure 5.4
Linked Qutput;.: e 2.38

Moduleccovn.... 1.4,1.4.4
Linklng ..., 1.1

Absolute Memory PartitlonsSection?7

Format 1.4, 4,2.3.12

Overlay Manager 6.3.1

Overlays................c0.... Section 6

Partial Section 8,1.3,2.3.26

Procedure Segments Section 4

Processcoovevviininiinenss, 3.1

Pro%ram Segments............ Section 5

thOverlays................... 6.3.2

Single Task Segments Section 3

StepS ... e 3.1
Listing:

Commands, Qutput........ 2.2,3.3.3,T2-1

File 1.4,1.45,23.21,3.5

Absolute Memory Partltlon,

Example F7-6
ErrorMessages T9-1
Messages 9.2
Overlay Structure, Example F6-2
Partial Link, Example F8-4
Procedure/Task Structure,

Example 4.4
Single Task Structure, Example 3.5
Task/Program Segment Structure,

Example 5.4
Warning Messages T9-2

Index-3

Index

Load:
AddressTags..........coviinnnenn. Ad
BlasTagscoivvinnuns A1

LOADCommand 2.2.16,6.3.1

Load OverlaySVC 6.21

LocalSymbol. 2.2,23.24,8.2

LogicalNameccvvivnnnns 23

MAPCommand 2.3.17,3.3.3

Memory:
imageFormat 1.4.4,2.3.12
Requirements...................... 3.4

Messages:
=) 9.1
ListingFlleccoviivnnnn. 9.2

Error. ... e T9-1
Warning.............c0iivinnnn. T9-2

Terminal Local File 9.3
Error. i e e T9-3

Warning............covviiiennnnn.. 9.1

Module:

DeflnitionTagsccovvvuns,s A2

LinkedOutput................. 1.4,1.4.4

Objectcviis, 1.4,1.4.2

Promotlon 6.2.3

NOAUTO Command 2.3.18,3.3.1

NOERRCR Command............... 2.3.19

NOLOADCommand 2.3.20

NOMAP Command et 2.3.21,3.3.3

NOPAGECommand 2.3.22

NOSYMT Command............. 2.3.23,3.3

NOTGLOBALCommand 2.3.24,8.3

Object:

Code......oiii i e i e 1.4.2
Format Appendix A
Format, Compressed . ..1.4.4,23.12
Format, Standard.......... 1.4.4,2.3.12
Tags ..o e e . TA-1

Module00vun.. 1.4,1.4.2

OEVTableccvvivvnnnn. 6.2,2

OPDTablecovvvniininns, 6.2.2

Output Listing Commands. ...2.2,3.3.3, T2-1

Ovarlaycoiivrinrnnnnas 1.34,6.1
Entry Vector (OEV) Table 6.2.2
Loading, Automatic.......... 2.3.16,6.2.2
Manager 1.3. 4,2316 6.2.2

Linkingl 6.3.1

Path et 1.3.4,6.2

Phase Directory {OPD} Table 6.2.2

Planningciiiiienn. 6.2

Structure 1.3.4,2.3.27,6.2
ControlStream 6.3
Example F1-3
Example ListingFile F6-2
LinkMap 6.4

Index-4

SVC,Loadccvutt 6.2.1
User-Loaded S 6.2.1
Overlays:
Linking...............oovvets Section 6
Program Segmentswith.......... 6.3.2
QOverview:
LinkEditor................ +..Section1
Program Structure 1.3
PAGECommand 2.3.25
PARTIALCommand............. 2.3.26,8.3
Partlal:
Link:
Control Streamcovvvenns 8.3
ExampleListingFlle F8-4
LinkMapcciviiivinnenn 8.4
Structure.. it e 8.2

Linklng............. Section 8,1.3,2.3.26

Commands00vuns 2.2, T21
Pascal Compiler B.2
Path,Overlay.................... 1.3.4,6.2
PHASE Command 23.27,6.3
Phase.................... 1L 1.3. 4, 2.3 27, 6.1

Directory (OPD) Table, Overlay .8.2.2

Root ...t i s 1.3.4

PHASEOCommand 3.3
PostallocatedPortlon 4.3
PreallocatedPortlon 4.3
PROCEDURE Command 2.3. 28, 4.3
Procedure:

Commands, Shared 2.2, T21

Example,Shared F1-1

Segment 1.3.2,2,3.28, 4.2

ttached 1.3.2
Shared.........coiiviiiiinnenne, 4,2
Segments, Linking Section 4
Shared 1.3.2,2.3.4,2.38
Procedurel/Task:

Structure 4.2
ControlStream 4.3
Example ListingFite 4.4
LinkMapooviiinnnnn. 4.4

PROGRAM Command 23.29,7.3
Program:

Areac. i i 2.3.29

IDTagsccvieii it e iins A13

Segment................... 1.3.3,2.3.31
Assembler-Defined, See PSEG
Exampleooiiiiiiiinnn, F1-2
SVCs ... i e 5.2

Segments:

Linking.................... Section 5
with Overlays, Linking 6.3.2
StructureOverview 1.3
Promotion,Module 6.2.3
PSEGcii it i 2.3.29

Directive 1.3.5,3.2

2270522-9701

ReentrantCode 1.3.2
REF:

Dlrective..civuinn 1.2,3.2

- T 1.2,1.43

- 15 - A7
Reference:

External...............cciinan.. 1.2

Tags:

BSEG0cviiiiiineeen A.14
Externalc...... A7
Secondary External A8

RepeatCountTags A2
Resolution:

Commands, Symbol 2,2,3.3.1, T2-1

Symbol i i, 1.2
RootPhasecovinenn 1.34
SEARCHCommand 2.3.30,3.3.1
Search Operation . ,................ 2.3.30
Searching,

Automatic........ 1.4.3,2.3.5,2.3.18, 3.3.1
Secondary External Reference Tags A8
SEGMENT Command 2.3.31,5.3
Se‘gment

ssembler-Defined 3.2
Common..........couvnvnn See CSEG
Data...............o0vun.. See DSEG
Program See PSEG

Attached Procedure 1.3.2 .

Dummiedcciivirnvnrnne 2.3.8

Example,Program F1-2

Procedure 1.3.2,2.3.28,4.2

Programc.vuvuns 1.3.3,2.3.31

Shared Procedure ,................. 4.2

SVCs,Program0uue 5.2

Task 1.3.1,2.3,34,3.2
Segments, Linking:

Linking:

Procedure Sectlon 4

Programccceuunnn Sectlon5

withOverlays 6.3.2

SingleTask Section 3
Sequential Library . .1.4.3.2,2.3.15, 3.3.1
SHARE Command............. 23. 32, 3.3.2
Shared:

DataArea..................2, 3.32,3.3.2

Procedure.............. 1.3.2 2 3. 4 2.3.8

Commands 2, 2, T2-1
Exampleccocvnvnnn. F1-1
Segment, 4.2
Sharlng Code 1.3.2,4.2
Single Task:
Segments, Linking Section 3
Structure 1.3.1,3.2
ControtStream 3.3
Example ListingFlle. .,............ 35
LinkMapcoiviiiininvns, 3.5
Special Functlon
Commands............... 2.2,3.3.2, T21

2270522-9701

{ndex

Standard Object Code Format . .. 1.4.4, 2.3.12
Structure;
Absolute Memory Partitlon...........
Overlay............c..... 1.3.4,2.3.27, 6 2
Overvlew, Program.................. 1.3
Partlal LInKooovvvnvrinnnnnnn, 8.2
ProcedurefTask 4.2
SingleTaskccvvunun. 1.3.1,3.2
Task/Program Segment.............. 5.2
Supervisor Calls (SVCs}): '
LoadOverlay 6.2.1
ProgramSegment 5.2
Symbol:
DefinitlonTags A9
External 1.2,3.2
Global 22,23.3,23.13,8.2
Local........ovvvvviennn, 2.2,23.24,8.2,
Processing Commands 2.2, T21
Resolutlon 1.2
Commands............. 2.2,3.31,T21
Table............... 2.3.23,2.3.24,2.3.33
Symbolic Debugging 2.3.23,2.3.33
SYMTCommand 2.3.33
SYNMONYM it it it ene s 2.3
Syntax: .
Command Appendix C
Rules Appendix C, 2.3
. Table; . -
' Overlay:
Entry Vector(OEV) 6.2.2
Phase Directory (OPD 6.2.2
Symbol2 3.23,2.3.24,2.3.33
Tag
haracters\, A
DEF.......... 1.2,1.4.3,2.3.3,2.3.24,3.3.3
REF ... 1.2,1.4.3
Tags:
BSEG Reference................. A4
Checksum A.10
[- A5
DEF ... ittt it A6
End-of-Record A0
Entry Point Definitlon AJd
External:
Definltlon AB
Reference.............coevvivs.. A7
2 A13
Load:
Addressccovutt. A4
Bias............... o, A1
Module Definition A2
ObjectCode.............covnvnn. TA-1
Prolgram ID... e A.13
.............................. A7
RepeatCount..................... A2
Secondary External Reference A8
Symbol Definitlon A9
TASKCommand 2.3.34,3.3
Index-5

Index

Task:
Segment 1.3.1,2.3.34,3.2
Segments, Linking Single Section 3
Task/Program Segment Structure 5.2
Control Stream 5.3
Example ListingFile S 5.4
LinkMap 5.4
Terminal Local File:
ErrorMessages T9-3
Messagesv.... 9.3

Index-6

User-Loaded Overlay................. 6.2.1

Warning:
Messages 9.1
ListingFile T9-2
XLECommandc...... 34
$BLOCK ...t 4.3
S$SHARED R, 4.3
2270522.9701

- .

R

